import chainlit as cl from faster_whisper import WhisperModel from openai import AsyncOpenAI import os os.environ["HF_HOME"] = "/app/.cache" model_path = "jacktol/whisper-medium.en-fine-tuned-for-ATC-faster-whisper" whisper_model = WhisperModel(model_path, device="cpu", compute_type="float32") client = AsyncOpenAI() system_prompt = """Convert the provided transcript into standard pilot-ATC syntax without altering the content. Ensure that all runway and heading numbers are formatted correctly (e.g., '11L' for 'one one left'). Use standard aviation phraseology wherever applicable. Maintain the segmentation of the transcript as provided, but exclude the timestamps. Based on the context and segmentation of each transmission, label it as either 'ATC' or 'Pilot'. At the very beginning of your response place a horizontal div with "---" and then line-break, and then add a H2 which says "Transcription", and then proceed with the transcription.""" def transcribe_audio(file_path): segments, info = whisper_model.transcribe(file_path, beam_size=5) transcript = [] for segment in segments: transcript.append(f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}") return '\n'.join(transcript).strip() @cl.on_chat_start async def on_chat_start(): try: if cl.user_session.get("transcription_counter") is None: cl.user_session.set("transcription_counter", 0) welcome_message = """ ## Welcome to the **ATC Transcription Assistant** --- ### What is this tool for? This tool transcribes **Air Traffic Control (ATC)** audio using OpenAI’s **Whisper medium.en** model, fine-tuned for ATC communications. Developed as part of a research project, the fine-tuned **Whisper medium.en** model offers significant improvements in transcription accuracy for ATC audio. --- ### Performance - **Fine-tuned Whisper medium.en WER**: 15.08% - **Non fine-tuned Whisper medium.en WER**: 94.59% - **Relative improvement**: 84.06% While the fine-tuned model performs better, **we cannot guarantee the accuracy of the transcriptions**. For more details, see the [blog post](https://jacktol.net/posts/fine-tuning_whisper_on_atc_data), or check out the [project repository](https://github.com/jack-tol/fine-tuning-whisper-on-atc-data). Feel free to contact me at [contact@jacktol.net](mailto:contact@jacktol.net). --- ### How to Use 1. **Upload an ATC audio file**: Upload an audio file in **MP3** or **WAV** format containing ATC communications. 2. **View the transcription**: The tool will transcribe the audio and display the text on the screen. 3. **Transcribe another audio**: Click **New Chat** in the top-right to start a new transcription. --- To get started, upload the audio below. """ await cl.Message(content=welcome_message).send() files = await cl.AskFileMessage( content="", accept={ "audio/wav": [".wav"], "audio/mpeg": [".mp3"] }, max_size_mb=50, timeout=3600 ).send() if files: audio_file = files[0] transcription = transcribe_audio(audio_file.path) msg = cl.Message(content="") await msg.send() stream = await client.chat.completions.create( messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": transcription}, ], stream=True, model="gpt-4o", temperature=0, ) async for part in stream: token = part.choices[0].delta.content or "" await msg.stream_token(token) await msg.send() except Exception as e: print(f"Error during on_chat_start: {str(e)}") @cl.on_stop async def on_chat_stop(): print("Session ended, resources cleaned up.")