jacquelinegrimm commited on
Commit
67151f3
1 Parent(s): 787b4ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -8,18 +8,19 @@ subprocess.run(['pip', 'install', '-Uqq', 'timm'])
8
  from fastai.vision.all import *
9
  import gradio as gr
10
 
11
- def finding(x): return x[0].isupper()
 
12
 
13
  learn = load_learner('model.pkl')
14
 
15
- #Classifies an x-ray image and returns probabilities for 'No Finding', 'Obstructive Pulmonary Disease' and 'Pneumonia'
16
- categories = ('No Finding', 'Obstructive Pulmonary Disease', 'Pneumonia')
17
 
 
18
  def classify_image(img):
19
  pred,idx,probs = learn.predict(img)
20
  return dict(zip(categories, map(float,probs)))
21
 
22
- #Creates a Gradio interface for image classification
23
  examples = ['normal.jpeg', 'obs.jpeg', 'pneu.jpeg']
24
  intf = gr.Interface(fn=classify_image, inputs='image', outputs='label', examples=examples)
25
  intf.launch(inline=False)
 
8
  from fastai.vision.all import *
9
  import gradio as gr
10
 
11
+ # Define a custom label function
12
+ def diagnosis(x): return x[0].isupper()
13
 
14
  learn = load_learner('model.pkl')
15
 
16
+ categories = ('Degenerative Infectious Disease', 'Mediastinal Anomalies', 'No Finding', 'Obstructive Pulmonary Disease', 'Pneumonia')
 
17
 
18
+ # Function that predicts an image's category and returns a dictionary mapping categories to their probabilities
19
  def classify_image(img):
20
  pred,idx,probs = learn.predict(img)
21
  return dict(zip(categories, map(float,probs)))
22
 
23
+ # Create and launch a Gradio interface, allowing interactive image classification
24
  examples = ['normal.jpeg', 'obs.jpeg', 'pneu.jpeg']
25
  intf = gr.Interface(fn=classify_image, inputs='image', outputs='label', examples=examples)
26
  intf.launch(inline=False)