|
import json |
|
import cv2 |
|
import numpy as np |
|
import os |
|
from torch.utils.data import Dataset |
|
from PIL import Image |
|
import cv2 |
|
from .data_utils import * |
|
from .base import BaseDataset |
|
|
|
class DreamBoothDataset(BaseDataset): |
|
def __init__(self, fg_dir, bg_dir): |
|
self.bg_dir = bg_dir |
|
bg_data = os.listdir(self.bg_dir) |
|
self.bg_data = [i for i in bg_data if 'mask' in i] |
|
self.image_dir = fg_dir |
|
self.data = os.listdir(self.image_dir) |
|
self.size = (512,512) |
|
self.clip_size = (224,224) |
|
''' |
|
Dynamic: |
|
0: Static View, High Quality |
|
1: Multi-view, Low Quality |
|
2: Multi-view, High Quality |
|
''' |
|
self.dynamic = 1 |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
idx = np.random.randint(0, len(self.data)-1) |
|
item = self.get_sample(idx) |
|
return item |
|
|
|
def check_region_size(self, image, yyxx, ratio, mode = 'max'): |
|
pass_flag = True |
|
H,W = image.shape[0], image.shape[1] |
|
H,W = H * ratio, W * ratio |
|
y1,y2,x1,x2 = yyxx |
|
h,w = y2-y1,x2-x1 |
|
if mode == 'max': |
|
if h > H and w > W: |
|
pass_flag = False |
|
elif mode == 'min': |
|
if h < H and w < W: |
|
pass_flag = False |
|
return pass_flag |
|
|
|
def get_alpha_mask(self, mask_path): |
|
image = cv2.imread( mask_path, cv2.IMREAD_UNCHANGED) |
|
mask = (image[:,:,-1] > 128).astype(np.uint8) |
|
return mask |
|
|
|
def get_sample(self, idx): |
|
dir_name = self.data[idx] |
|
dir_path = os.path.join(self.image_dir, dir_name) |
|
images = os.listdir(dir_path) |
|
image_name = [i for i in images if '.png' in i][0] |
|
image_path = os.path.join(dir_path, image_name) |
|
|
|
image = cv2.imread( image_path, cv2.IMREAD_UNCHANGED) |
|
mask = (image[:,:,-1] > 128).astype(np.uint8) |
|
image = image[:,:,:-1] |
|
|
|
image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB) |
|
ref_image = image |
|
ref_mask = mask |
|
ref_image, ref_mask = expand_image_mask(image, mask, ratio=1.4) |
|
bg_idx = np.random.randint(0, len(self.bg_data)-1) |
|
|
|
tar_mask_name = self.bg_data[bg_idx] |
|
tar_mask_path = os.path.join(self.bg_dir, tar_mask_name) |
|
tar_image_path = tar_mask_path.replace('_mask','_GT') |
|
|
|
tar_image = cv2.imread(tar_image_path).astype(np.uint8) |
|
tar_image = cv2.cvtColor(tar_image, cv2.COLOR_BGR2RGB) |
|
tar_mask = (cv2.imread(tar_mask_path) > 128).astype(np.uint8)[:,:,0] |
|
|
|
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask) |
|
sampled_time_steps = self.sample_timestep() |
|
item_with_collage['time_steps'] = sampled_time_steps |
|
return item_with_collage |
|
|
|
|