|
import json |
|
import cv2 |
|
import numpy as np |
|
import os |
|
from torch.utils.data import Dataset |
|
from PIL import Image |
|
import cv2 |
|
from .data_utils import * |
|
from .base import BaseDataset |
|
import albumentations as A |
|
|
|
class DresscodeDataset(BaseDataset): |
|
def __init__(self, image_dir): |
|
self.image_root = image_dir |
|
self.data = os.listdir(self.image_root) |
|
self.size = (512,512) |
|
self.clip_size = (224,224) |
|
self.dynamic = 2 |
|
|
|
def __len__(self): |
|
return 20000 |
|
|
|
def check_region_size(self, image, yyxx, ratio, mode = 'max'): |
|
pass_flag = True |
|
H,W = image.shape[0], image.shape[1] |
|
H,W = H * ratio, W * ratio |
|
y1,y2,x1,x2 = yyxx |
|
h,w = y2-y1,x2-x1 |
|
if mode == 'max': |
|
if h > H and w > W: |
|
pass_flag = False |
|
elif mode == 'min': |
|
if h < H and w < W: |
|
pass_flag = False |
|
return pass_flag |
|
|
|
def get_sample(self, idx): |
|
tar_mask_path = os.path.join(self.image_root, self.data[idx]) |
|
tar_image_path = tar_mask_path.replace('label_maps/','images/').replace('_4.png','_0.jpg') |
|
ref_image_path = tar_mask_path.replace('label_maps/','images/').replace('_4.png','_1.jpg') |
|
|
|
|
|
ref_image = cv2.imread(ref_image_path) |
|
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB) |
|
|
|
tar_image = cv2.imread(tar_image_path) |
|
tar_image = cv2.cvtColor(tar_image, cv2.COLOR_BGR2RGB) |
|
|
|
ref_mask = (ref_image < 240).astype(np.uint8)[:,:,0] |
|
|
|
|
|
tar_mask = Image.open(tar_mask_path ).convert('P') |
|
tar_mask= np.array(tar_mask) |
|
tar_mask = tar_mask == 4 |
|
|
|
|
|
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask, max_ratio = 1.0) |
|
sampled_time_steps = self.sample_timestep() |
|
item_with_collage['time_steps'] = sampled_time_steps |
|
return item_with_collage |
|
|
|
|