|
import json |
|
import cv2 |
|
import numpy as np |
|
import os |
|
from torch.utils.data import Dataset |
|
from PIL import Image |
|
import cv2 |
|
from .data_utils import * |
|
from .base import BaseDataset |
|
import albumentations as A |
|
|
|
class FashionTryonDataset(BaseDataset): |
|
def __init__(self, image_dir): |
|
self.image_root = image_dir |
|
self.data =os.listdir(self.image_root) |
|
self.size = (512,512) |
|
self.clip_size = (224,224) |
|
self.dynamic = 2 |
|
|
|
def __len__(self): |
|
return 5000 |
|
|
|
def aug_data(self, image): |
|
transform = A.Compose([ |
|
A.RandomBrightnessContrast(p=0.5), |
|
]) |
|
transformed = transform(image=image.astype(np.uint8)) |
|
transformed_image = transformed["image"] |
|
return transformed_image |
|
|
|
def check_region_size(self, image, yyxx, ratio, mode = 'max'): |
|
pass_flag = True |
|
H,W = image.shape[0], image.shape[1] |
|
H,W = H * ratio, W * ratio |
|
y1,y2,x1,x2 = yyxx |
|
h,w = y2-y1,x2-x1 |
|
if mode == 'max': |
|
if h > H and w > W: |
|
pass_flag = False |
|
elif mode == 'min': |
|
if h < H and w < W: |
|
pass_flag = False |
|
return pass_flag |
|
|
|
def get_sample(self, idx): |
|
cloth_dir = os.path.join(self.image_root, self.data[idx]) |
|
ref_image_path = os.path.join(cloth_dir, 'target.jpg') |
|
|
|
ref_image = cv2.imread(ref_image_path) |
|
ref_image = cv2.cvtColor(ref_image.copy(), cv2.COLOR_BGR2RGB) |
|
|
|
ref_mask_path = os.path.join(cloth_dir,'mask.jpg') |
|
ref_mask = cv2.imread(ref_mask_path)[:,:,0] > 128 |
|
|
|
target_dirs = [i for i in os.listdir(cloth_dir ) if '.jpg' not in i] |
|
target_dir_name = np.random.choice(target_dirs) |
|
|
|
target_image_path = os.path.join(cloth_dir, target_dir_name + '.jpg') |
|
target_image= cv2.imread(target_image_path) |
|
tar_image = cv2.cvtColor(target_image.copy(), cv2.COLOR_BGR2RGB) |
|
|
|
target_mask_path = os.path.join(cloth_dir, target_dir_name, 'segment.png') |
|
tar_mask= cv2.imread(target_mask_path)[:,:,0] |
|
target_mask = tar_mask == 7 |
|
kernel = np.ones((3, 3), dtype=np.uint8) |
|
tar_mask = cv2.erode(target_mask.astype(np.uint8), kernel, iterations=3) |
|
|
|
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask, max_ratio = 1.0) |
|
sampled_time_steps = self.sample_timestep() |
|
item_with_collage['time_steps'] = sampled_time_steps |
|
return item_with_collage |
|
|
|
|
|
|
|
|