|
import json |
|
import cv2 |
|
import numpy as np |
|
import os |
|
from torch.utils.data import Dataset |
|
from PIL import Image |
|
import cv2 |
|
from .data_utils import * |
|
from .base import BaseDataset |
|
from pycocotools import mask as mask_utils |
|
|
|
class SAMDataset(BaseDataset): |
|
def __init__(self, sub1, sub2, sub3, sub4): |
|
image_mask_dict = {} |
|
self.data = [] |
|
self.register_subset(sub1) |
|
self.register_subset(sub2) |
|
self.register_subset(sub3) |
|
self.register_subset(sub4) |
|
self.size = (512,512) |
|
self.clip_size = (224,224) |
|
self.dynamic = 0 |
|
|
|
def register_subset(self, path): |
|
data = os.listdir(path) |
|
data = [ os.path.join(path, i) for i in data if '.json' in i] |
|
self.data = self.data + data |
|
|
|
def get_sample(self, idx): |
|
|
|
json_path = self.data[idx] |
|
image_path = json_path.replace('.json', '.jpg') |
|
|
|
with open(json_path, 'r') as json_file: |
|
data = json.load(json_file) |
|
annotation = data['annotations'] |
|
|
|
valid_ids = [] |
|
for i in range(len(annotation)): |
|
area = annotation[i]['area'] |
|
if area > 100 * 100 * 5: |
|
valid_ids.append(i) |
|
|
|
chosen_id = np.random.choice(valid_ids) |
|
mask = mask_utils.decode(annotation[chosen_id]["segmentation"] ) |
|
|
|
|
|
image = cv2.imread(image_path) |
|
ref_image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB) |
|
tar_image = ref_image |
|
|
|
ref_mask = mask |
|
tar_mask = mask |
|
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask) |
|
sampled_time_steps = self.sample_timestep() |
|
item_with_collage['time_steps'] = sampled_time_steps |
|
return item_with_collage |
|
|
|
def __len__(self): |
|
return 20000 |
|
|
|
def check_region_size(self, image, yyxx, ratio, mode = 'max'): |
|
pass_flag = True |
|
H,W = image.shape[0], image.shape[1] |
|
H,W = H * ratio, W * ratio |
|
y1,y2,x1,x2 = yyxx |
|
h,w = y2-y1,x2-x1 |
|
if mode == 'max': |
|
if h > H or w > W: |
|
pass_flag = False |
|
elif mode == 'min': |
|
if h < H or w < W: |
|
pass_flag = False |
|
return pass_flag |
|
|
|
|
|
|
|
|
|
|