import os import gradio as gr from inference import load_models, cache_path from PIL import Image from os import path canvas_size = 512 if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) with gr.Blocks() as demo: infer = load_models() with gr.Column(): with gr.Row(): with gr.Column(): s = gr.Slider(label="steps", minimum=4, maximum=8, step=1, value=4, interactive=True) c = gr.Slider(label="cfg", minimum=0.1, maximum=3, step=0.1, value=1, interactive=True) i_s = gr.Slider(label="sketch strength", minimum=0.1, maximum=0.9, step=0.1, value=0.9, interactive=True) with gr.Column(): mod = gr.Text(label="Model HuggingFace id (after changing this wait until the model downloads in the console)", value="stabilityai/stable-diffusion-xl-base-1.0", interactive=True) t = gr.Text(label="Prompt", value="mascot logo of an {hamster dressed as james bond, 007, secret agent, pointing pistol at the viewer}", interactive=True) se = gr.Number(label="seed", value=1337, interactive=True) with gr.Row(equal_height=True): i = gr.Image(source="canvas", tool="color-sketch", shape=(canvas_size, canvas_size), width=canvas_size, height=canvas_size, type="pil") o = gr.Image(width=canvas_size, height=canvas_size) def process_image(p, im, steps, cfg, image_strength, seed): if not im: return Image.new("RGB", (canvas_size, canvas_size)) return infer( prompt=p, image=im, num_inference_steps=steps, guidance_scale=cfg, strength=image_strength, seed=int(seed) ) reactive_controls = [t, i, s, c, i_s, se] for control in reactive_controls: control.change(fn=process_image, inputs=reactive_controls, outputs=o) def update_model(model_name): global infer infer = load_models(model_name) mod.change(fn=update_model, inputs=mod) demo.launch()