Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,660 Bytes
9b9e0ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
# Author: Haohe Liu
# Email: haoheliu@gmail.com
# Date: 11 Feb 2023
import os
import json
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib
from scipy.io import wavfile
from matplotlib import pyplot as plt
matplotlib.use("Agg")
import hashlib
import os
import requests
from tqdm import tqdm
URL_MAP = {
"vggishish_lpaps": "https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/vggishish16.pt",
"vggishish_mean_std_melspec_10s_22050hz": "https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/train_means_stds_melspec_10s_22050hz.txt",
"melception": "https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/melception-21-05-10T09-28-40.pt",
}
CKPT_MAP = {
"vggishish_lpaps": "vggishish16.pt",
"vggishish_mean_std_melspec_10s_22050hz": "train_means_stds_melspec_10s_22050hz.txt",
"melception": "melception-21-05-10T09-28-40.pt",
}
MD5_MAP = {
"vggishish_lpaps": "197040c524a07ccacf7715d7080a80bd",
"vggishish_mean_std_melspec_10s_22050hz": "f449c6fd0e248936c16f6d22492bb625",
"melception": "a71a41041e945b457c7d3d814bbcf72d",
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def read_list(fname):
result = []
with open(fname, "r") as f:
for each in f.readlines():
each = each.strip("\n")
result.append(each)
return result
def build_dataset_json_from_list(list_path):
data = []
for each in read_list(list_path):
if "|" in each:
wav, caption = each.split("|")
else:
caption = each
wav = ""
data.append(
{
"wav": wav,
"caption": caption,
}
)
return {"data": data}
def load_json(fname):
with open(fname, "r") as f:
data = json.load(f)
return data
def read_json(dataset_json_file):
with open(dataset_json_file, "r") as fp:
data_json = json.load(fp)
return data_json["data"]
def copy_test_subset_data(metadata, testset_copy_target_path):
# metadata = read_json(testset_metadata)
os.makedirs(testset_copy_target_path, exist_ok=True)
if len(os.listdir(testset_copy_target_path)) == len(metadata):
return
else:
# delete files in folder testset_copy_target_path
for file in os.listdir(testset_copy_target_path):
try:
os.remove(os.path.join(testset_copy_target_path, file))
except Exception as e:
print(e)
print("Copying test subset data to {}".format(testset_copy_target_path))
for each in tqdm(metadata):
cmd = "cp {} {}".format(each["wav"], os.path.join(testset_copy_target_path))
os.system(cmd)
def listdir_nohidden(path):
for f in os.listdir(path):
if not f.startswith("."):
yield f
def get_restore_step(path):
checkpoints = os.listdir(path)
if os.path.exists(os.path.join(path, "final.ckpt")):
return "final.ckpt", 0
elif not os.path.exists(os.path.join(path, "last.ckpt")):
steps = [int(x.split(".ckpt")[0].split("step=")[1]) for x in checkpoints]
return checkpoints[np.argmax(steps)], np.max(steps)
else:
steps = []
for x in checkpoints:
if "last" in x:
if "-v" not in x:
fname = "last.ckpt"
else:
this_version = int(x.split(".ckpt")[0].split("-v")[1])
steps.append(this_version)
if len(steps) == 0 or this_version > np.max(steps):
fname = "last-v%s.ckpt" % this_version
return fname, 0
def download(url, local_path, chunk_size=1024):
os.makedirs(os.path.split(local_path)[0], exist_ok=True)
with requests.get(url, stream=True) as r:
total_size = int(r.headers.get("content-length", 0))
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
with open(local_path, "wb") as f:
for data in r.iter_content(chunk_size=chunk_size):
if data:
f.write(data)
pbar.update(chunk_size)
def md5_hash(path):
with open(path, "rb") as f:
content = f.read()
return hashlib.md5(content).hexdigest()
def get_ckpt_path(name, root, check=False):
assert name in URL_MAP
path = os.path.join(root, CKPT_MAP[name])
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
download(URL_MAP[name], path)
md5 = md5_hash(path)
assert md5 == MD5_MAP[name], md5
return path
class KeyNotFoundError(Exception):
def __init__(self, cause, keys=None, visited=None):
self.cause = cause
self.keys = keys
self.visited = visited
messages = list()
if keys is not None:
messages.append("Key not found: {}".format(keys))
if visited is not None:
messages.append("Visited: {}".format(visited))
messages.append("Cause:\n{}".format(cause))
message = "\n".join(messages)
super().__init__(message)
def retrieve(
list_or_dict, key, splitval="/", default=None, expand=True, pass_success=False
):
"""Given a nested list or dict return the desired value at key expanding
callable nodes if necessary and :attr:`expand` is ``True``. The expansion
is done in-place.
Parameters
----------
list_or_dict : list or dict
Possibly nested list or dictionary.
key : str
key/to/value, path like string describing all keys necessary to
consider to get to the desired value. List indices can also be
passed here.
splitval : str
String that defines the delimiter between keys of the
different depth levels in `key`.
default : obj
Value returned if :attr:`key` is not found.
expand : bool
Whether to expand callable nodes on the path or not.
Returns
-------
The desired value or if :attr:`default` is not ``None`` and the
:attr:`key` is not found returns ``default``.
Raises
------
Exception if ``key`` not in ``list_or_dict`` and :attr:`default` is
``None``.
"""
keys = key.split(splitval)
success = True
try:
visited = []
parent = None
last_key = None
for key in keys:
if callable(list_or_dict):
if not expand:
raise KeyNotFoundError(
ValueError(
"Trying to get past callable node with expand=False."
),
keys=keys,
visited=visited,
)
list_or_dict = list_or_dict()
parent[last_key] = list_or_dict
last_key = key
parent = list_or_dict
try:
if isinstance(list_or_dict, dict):
list_or_dict = list_or_dict[key]
else:
list_or_dict = list_or_dict[int(key)]
except (KeyError, IndexError, ValueError) as e:
raise KeyNotFoundError(e, keys=keys, visited=visited)
visited += [key]
# final expansion of retrieved value
if expand and callable(list_or_dict):
list_or_dict = list_or_dict()
parent[last_key] = list_or_dict
except KeyNotFoundError as e:
if default is None:
raise e
else:
list_or_dict = default
success = False
if not pass_success:
return list_or_dict
else:
return list_or_dict, success
def to_device(data, device):
if len(data) == 12:
(
ids,
raw_texts,
speakers,
texts,
src_lens,
max_src_len,
mels,
mel_lens,
max_mel_len,
pitches,
energies,
durations,
) = data
speakers = torch.from_numpy(speakers).long().to(device)
texts = torch.from_numpy(texts).long().to(device)
src_lens = torch.from_numpy(src_lens).to(device)
mels = torch.from_numpy(mels).float().to(device)
mel_lens = torch.from_numpy(mel_lens).to(device)
pitches = torch.from_numpy(pitches).float().to(device)
energies = torch.from_numpy(energies).to(device)
durations = torch.from_numpy(durations).long().to(device)
return (
ids,
raw_texts,
speakers,
texts,
src_lens,
max_src_len,
mels,
mel_lens,
max_mel_len,
pitches,
energies,
durations,
)
if len(data) == 6:
(ids, raw_texts, speakers, texts, src_lens, max_src_len) = data
speakers = torch.from_numpy(speakers).long().to(device)
texts = torch.from_numpy(texts).long().to(device)
src_lens = torch.from_numpy(src_lens).to(device)
return (ids, raw_texts, speakers, texts, src_lens, max_src_len)
def log(logger, step=None, fig=None, audio=None, sampling_rate=22050, tag=""):
# if losses is not None:
# logger.add_scalar("Loss/total_loss", losses[0], step)
# logger.add_scalar("Loss/mel_loss", losses[1], step)
# logger.add_scalar("Loss/mel_postnet_loss", losses[2], step)
# logger.add_scalar("Loss/pitch_loss", losses[3], step)
# logger.add_scalar("Loss/energy_loss", losses[4], step)
# logger.add_scalar("Loss/duration_loss", losses[5], step)
# if(len(losses) > 6):
# logger.add_scalar("Loss/disc_loss", losses[6], step)
# logger.add_scalar("Loss/fmap_loss", losses[7], step)
# logger.add_scalar("Loss/r_loss", losses[8], step)
# logger.add_scalar("Loss/g_loss", losses[9], step)
# logger.add_scalar("Loss/gen_loss", losses[10], step)
# logger.add_scalar("Loss/diff_loss", losses[11], step)
if fig is not None:
logger.add_figure(tag, fig)
if audio is not None:
audio = audio / (max(abs(audio)) * 1.1)
logger.add_audio(
tag,
audio,
sample_rate=sampling_rate,
)
def get_mask_from_lengths(lengths, max_len=None):
batch_size = lengths.shape[0]
if max_len is None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len).unsqueeze(0).expand(batch_size, -1).to(device)
mask = ids >= lengths.unsqueeze(1).expand(-1, max_len)
return mask
def expand(values, durations):
out = list()
for value, d in zip(values, durations):
out += [value] * max(0, int(d))
return np.array(out)
def synth_one_sample_val(
targets, predictions, vocoder, model_config, preprocess_config
):
index = np.random.choice(list(np.arange(targets[6].size(0))))
basename = targets[0][index]
src_len = predictions[8][index].item()
mel_len = predictions[9][index].item()
mel_target = targets[6][index, :mel_len].detach().transpose(0, 1)
mel_prediction = predictions[0][index, :mel_len].detach().transpose(0, 1)
postnet_mel_prediction = predictions[1][index, :mel_len].detach().transpose(0, 1)
duration = targets[11][index, :src_len].detach().cpu().numpy()
if preprocess_config["preprocessing"]["pitch"]["feature"] == "phoneme_level":
pitch = predictions[2][index, :src_len].detach().cpu().numpy()
pitch = expand(pitch, duration)
else:
pitch = predictions[2][index, :mel_len].detach().cpu().numpy()
if preprocess_config["preprocessing"]["energy"]["feature"] == "phoneme_level":
energy = predictions[3][index, :src_len].detach().cpu().numpy()
energy = expand(energy, duration)
else:
energy = predictions[3][index, :mel_len].detach().cpu().numpy()
with open(
os.path.join(preprocess_config["path"]["preprocessed_path"], "stats.json")
) as f:
stats = json.load(f)
stats = stats["pitch"] + stats["energy"][:2]
# from datetime import datetime
# now = datetime.now()
# current_time = now.strftime("%D:%H:%M:%S")
# np.save(("mel_pred_%s.npy" % current_time).replace("/","-"), mel_prediction.cpu().numpy())
# np.save(("postnet_mel_prediction_%s.npy" % current_time).replace("/","-"), postnet_mel_prediction.cpu().numpy())
# np.save(("mel_target_%s.npy" % current_time).replace("/","-"), mel_target.cpu().numpy())
fig = plot_mel(
[
(mel_prediction.cpu().numpy(), pitch, energy),
(postnet_mel_prediction.cpu().numpy(), pitch, energy),
(mel_target.cpu().numpy(), pitch, energy),
],
stats,
[
"Raw mel spectrogram prediction",
"Postnet mel prediction",
"Ground-Truth Spectrogram",
],
)
if vocoder is not None:
from .model_util import vocoder_infer
wav_reconstruction = vocoder_infer(
mel_target.unsqueeze(0),
vocoder,
model_config,
preprocess_config,
)[0]
wav_prediction = vocoder_infer(
postnet_mel_prediction.unsqueeze(0),
vocoder,
model_config,
preprocess_config,
)[0]
else:
wav_reconstruction = wav_prediction = None
return fig, wav_reconstruction, wav_prediction, basename
def synth_one_sample(mel_input, mel_prediction, labels, vocoder):
if vocoder is not None:
from .model_util import vocoder_infer
wav_reconstruction = vocoder_infer(
mel_input.permute(0, 2, 1),
vocoder,
)
wav_prediction = vocoder_infer(
mel_prediction.permute(0, 2, 1),
vocoder,
)
else:
wav_reconstruction = wav_prediction = None
return wav_reconstruction, wav_prediction
def synth_samples(targets, predictions, vocoder, model_config, preprocess_config, path):
# (diff_output, diff_loss, latent_loss) = diffusion
basenames = targets[0]
for i in range(len(predictions[1])):
basename = basenames[i]
src_len = predictions[8][i].item()
mel_len = predictions[9][i].item()
mel_prediction = predictions[1][i, :mel_len].detach().transpose(0, 1)
# diff_output = diff_output[i, :mel_len].detach().transpose(0, 1)
# duration = predictions[5][i, :src_len].detach().cpu().numpy()
if preprocess_config["preprocessing"]["pitch"]["feature"] == "phoneme_level":
pitch = predictions[2][i, :src_len].detach().cpu().numpy()
# pitch = expand(pitch, duration)
else:
pitch = predictions[2][i, :mel_len].detach().cpu().numpy()
if preprocess_config["preprocessing"]["energy"]["feature"] == "phoneme_level":
energy = predictions[3][i, :src_len].detach().cpu().numpy()
# energy = expand(energy, duration)
else:
energy = predictions[3][i, :mel_len].detach().cpu().numpy()
# import ipdb; ipdb.set_trace()
with open(
os.path.join(preprocess_config["path"]["preprocessed_path"], "stats.json")
) as f:
stats = json.load(f)
stats = stats["pitch"] + stats["energy"][:2]
fig = plot_mel(
[
(mel_prediction.cpu().numpy(), pitch, energy),
],
stats,
["Synthetized Spectrogram by PostNet"],
)
# np.save("{}_postnet.npy".format(basename), mel_prediction.cpu().numpy())
plt.savefig(os.path.join(path, "{}_postnet_2.png".format(basename)))
plt.close()
from .model_util import vocoder_infer
mel_predictions = predictions[1].transpose(1, 2)
lengths = predictions[9] * preprocess_config["preprocessing"]["stft"]["hop_length"]
wav_predictions = vocoder_infer(
mel_predictions, vocoder, model_config, preprocess_config, lengths=lengths
)
sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
for wav, basename in zip(wav_predictions, basenames):
wavfile.write(os.path.join(path, "{}.wav".format(basename)), sampling_rate, wav)
def plot_mel(data, titles=None):
fig, axes = plt.subplots(len(data), 1, squeeze=False)
if titles is None:
titles = [None for i in range(len(data))]
for i in range(len(data)):
mel = data[i]
axes[i][0].imshow(mel, origin="lower", aspect="auto")
axes[i][0].set_aspect(2.5, adjustable="box")
axes[i][0].set_ylim(0, mel.shape[0])
axes[i][0].set_title(titles[i], fontsize="medium")
axes[i][0].tick_params(labelsize="x-small", left=False, labelleft=False)
axes[i][0].set_anchor("W")
return fig
def pad_1D(inputs, PAD=0):
def pad_data(x, length, PAD):
x_padded = np.pad(
x, (0, length - x.shape[0]), mode="constant", constant_values=PAD
)
return x_padded
max_len = max((len(x) for x in inputs))
padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])
return padded
def pad_2D(inputs, maxlen=None):
def pad(x, max_len):
PAD = 0
if np.shape(x)[0] > max_len:
raise ValueError("not max_len")
s = np.shape(x)[1]
x_padded = np.pad(
x, (0, max_len - np.shape(x)[0]), mode="constant", constant_values=PAD
)
return x_padded[:, :s]
if maxlen:
output = np.stack([pad(x, maxlen) for x in inputs])
else:
max_len = max(np.shape(x)[0] for x in inputs)
output = np.stack([pad(x, max_len) for x in inputs])
return output
def pad(input_ele, mel_max_length=None):
if mel_max_length:
max_len = mel_max_length
else:
max_len = max([input_ele[i].size(0) for i in range(len(input_ele))])
out_list = list()
for i, batch in enumerate(input_ele):
if len(batch.shape) == 1:
one_batch_padded = F.pad(
batch, (0, max_len - batch.size(0)), "constant", 0.0
)
elif len(batch.shape) == 2:
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0
)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded |