Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# DeiT: https://github.com/facebookresearch/deit | |
# -------------------------------------------------------- | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import timm.models.vision_transformer | |
from timm.models.vision_transformer import PatchEmbed, Block | |
from qa_mdt.audioldm_train.modules.audiomae.util.patch_embed import ( | |
PatchEmbed_new, | |
PatchEmbed3D_new, | |
) | |
class VisionTransformer(timm.models.vision_transformer.VisionTransformer): | |
"""Vision Transformer with support for global average pooling""" | |
def __init__( | |
self, global_pool=False, mask_2d=True, use_custom_patch=False, **kwargs | |
): | |
super(VisionTransformer, self).__init__(**kwargs) | |
self.global_pool = global_pool | |
if self.global_pool: | |
norm_layer = kwargs["norm_layer"] | |
embed_dim = kwargs["embed_dim"] | |
self.fc_norm = norm_layer(embed_dim) | |
del self.norm # remove the original norm | |
self.mask_2d = mask_2d | |
self.use_custom_patch = use_custom_patch | |
num_heads = 12 | |
depth = 12 | |
mlp_ratio = 4 | |
def forward_features(self, x): | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
x = x + self.pos_embed[:, 1:, :] | |
cls_token = self.cls_token + self.pos_embed[:, :1, :] | |
cls_tokens = cls_token.expand( | |
B, -1, -1 | |
) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = self.pos_drop(x) | |
for blk in self.blocks: | |
x = blk(x) | |
if self.global_pool: | |
x = x[:, 1:, :].mean(dim=1) # global pool without cls token | |
outcome = self.fc_norm(x) | |
else: | |
x = self.norm(x) | |
outcome = x[:, 0] | |
return outcome | |
def random_masking(self, x, mask_ratio): | |
""" | |
Perform per-sample random masking by per-sample shuffling. | |
Per-sample shuffling is done by argsort random noise. | |
x: [N, L, D], sequence | |
""" | |
N, L, D = x.shape # batch, length, dim | |
len_keep = int(L * (1 - mask_ratio)) | |
noise = torch.rand(N, L, device=x.device) # noise in [0, 1] | |
# sort noise for each sample | |
ids_shuffle = torch.argsort( | |
noise, dim=1 | |
) # ascend: small is keep, large is remove | |
ids_restore = torch.argsort(ids_shuffle, dim=1) | |
# keep the first subset | |
ids_keep = ids_shuffle[:, :len_keep] | |
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) | |
# generate the binary mask: 0 is keep, 1 is remove | |
mask = torch.ones([N, L], device=x.device) | |
mask[:, :len_keep] = 0 | |
# unshuffle to get the binary mask | |
mask = torch.gather(mask, dim=1, index=ids_restore) | |
return x_masked, mask, ids_restore | |
def random_masking_2d(self, x, mask_t_prob, mask_f_prob): | |
""" | |
2D: Spectrogram (msking t and f under mask_t_prob and mask_f_prob) | |
Perform per-sample random masking by per-sample shuffling. | |
Per-sample shuffling is done by argsort random noise. | |
x: [N, L, D], sequence | |
""" | |
N, L, D = x.shape # batch, length, dim | |
if self.use_custom_patch: | |
# # for AS | |
T = 101 # 64,101 | |
F = 12 # 8,12 | |
# # for ESC | |
# T=50 | |
# F=12 | |
# for SPC | |
# T=12 | |
# F=12 | |
else: | |
# ## for AS | |
T = 64 | |
F = 8 | |
# ## for ESC | |
# T=32 | |
# F=8 | |
## for SPC | |
# T=8 | |
# F=8 | |
# mask T | |
x = x.reshape(N, T, F, D) | |
len_keep_T = int(T * (1 - mask_t_prob)) | |
noise = torch.rand(N, T, device=x.device) # noise in [0, 1] | |
# sort noise for each sample | |
ids_shuffle = torch.argsort( | |
noise, dim=1 | |
) # ascend: small is keep, large is remove | |
ids_keep = ids_shuffle[:, :len_keep_T] | |
index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, F, D) | |
# x_masked = torch.gather(x, dim=1, index=index) | |
# x_masked = x_masked.reshape(N,len_keep_T*F,D) | |
x = torch.gather(x, dim=1, index=index) # N, len_keep_T(T'), F, D | |
# mask F | |
# x = x.reshape(N, T, F, D) | |
x = x.permute(0, 2, 1, 3) # N T' F D => N F T' D | |
len_keep_F = int(F * (1 - mask_f_prob)) | |
noise = torch.rand(N, F, device=x.device) # noise in [0, 1] | |
# sort noise for each sample | |
ids_shuffle = torch.argsort( | |
noise, dim=1 | |
) # ascend: small is keep, large is remove | |
ids_keep = ids_shuffle[:, :len_keep_F] | |
# index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, T, D) | |
index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, len_keep_T, D) | |
x_masked = torch.gather(x, dim=1, index=index) | |
x_masked = x_masked.permute(0, 2, 1, 3) # N F' T' D => N T' F' D | |
# x_masked = x_masked.reshape(N,len_keep*T,D) | |
x_masked = x_masked.reshape(N, len_keep_F * len_keep_T, D) | |
return x_masked, None, None | |
def forward_features_mask(self, x, mask_t_prob, mask_f_prob): | |
B = x.shape[0] # 4,1,1024,128 | |
x = self.patch_embed(x) # 4, 512, 768 | |
x = x + self.pos_embed[:, 1:, :] | |
if self.random_masking_2d: | |
x, mask, ids_restore = self.random_masking_2d(x, mask_t_prob, mask_f_prob) | |
else: | |
x, mask, ids_restore = self.random_masking(x, mask_t_prob) | |
cls_token = self.cls_token + self.pos_embed[:, :1, :] | |
cls_tokens = cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = self.pos_drop(x) | |
# apply Transformer blocks | |
for blk in self.blocks: | |
x = blk(x) | |
if self.global_pool: | |
x = x[:, 1:, :].mean(dim=1) # global pool without cls token | |
outcome = self.fc_norm(x) | |
else: | |
x = self.norm(x) | |
outcome = x[:, 0] | |
return outcome | |
# overwrite original timm | |
def forward(self, x, v=None, mask_t_prob=0.0, mask_f_prob=0.0): | |
if mask_t_prob > 0.0 or mask_f_prob > 0.0: | |
x = self.forward_features_mask( | |
x, mask_t_prob=mask_t_prob, mask_f_prob=mask_f_prob | |
) | |
else: | |
x = self.forward_features(x) | |
x = self.head(x) | |
return x | |
def vit_small_patch16(**kwargs): | |
model = VisionTransformer( | |
patch_size=16, | |
embed_dim=384, | |
depth=12, | |
num_heads=6, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs | |
) | |
return model | |
def vit_base_patch16(**kwargs): | |
model = VisionTransformer( | |
patch_size=16, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs | |
) | |
return model | |
def vit_large_patch16(**kwargs): | |
model = VisionTransformer( | |
patch_size=16, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs | |
) | |
return model | |
def vit_huge_patch14(**kwargs): | |
model = VisionTransformer( | |
patch_size=14, | |
embed_dim=1280, | |
depth=32, | |
num_heads=16, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs | |
) | |
return model | |