Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,384 Bytes
5017efb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import warnings
warnings.simplefilter(action="ignore", category=FutureWarning)
import itertools
import os
import time
import argparse
import json
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
import torch.multiprocessing as mp
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from env import AttrDict, build_env
from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist, MAX_WAV_VALUE
from bigvgan import BigVGAN
from discriminators import (
MultiPeriodDiscriminator,
MultiResolutionDiscriminator,
MultiBandDiscriminator,
MultiScaleSubbandCQTDiscriminator,
)
from loss import (
feature_loss,
generator_loss,
discriminator_loss,
MultiScaleMelSpectrogramLoss,
)
from utils import (
plot_spectrogram,
plot_spectrogram_clipped,
scan_checkpoint,
load_checkpoint,
save_checkpoint,
save_audio,
)
import torchaudio as ta
from pesq import pesq
from tqdm import tqdm
import auraloss
torch.backends.cudnn.benchmark = False
def train(rank, a, h):
if h.num_gpus > 1:
# initialize distributed
init_process_group(
backend=h.dist_config["dist_backend"],
init_method=h.dist_config["dist_url"],
world_size=h.dist_config["world_size"] * h.num_gpus,
rank=rank,
)
# Set seed and device
torch.cuda.manual_seed(h.seed)
torch.cuda.set_device(rank)
device = torch.device(f"cuda:{rank:d}")
# Define BigVGAN generator
generator = BigVGAN(h).to(device)
# Define discriminators. MPD is used by default
mpd = MultiPeriodDiscriminator(h).to(device)
# Define additional discriminators. BigVGAN-v1 uses UnivNet's MRD as default
# New in BigVGAN-v2: option to switch to new discriminators: MultiBandDiscriminator / MultiScaleSubbandCQTDiscriminator
if h.get("use_mbd_instead_of_mrd", False): # Switch to MBD
print(
"[INFO] using MultiBandDiscriminator of BigVGAN-v2 instead of MultiResolutionDiscriminator"
)
# Variable name is kept as "mrd" for backward compatibility & minimal code change
mrd = MultiBandDiscriminator(h).to(device)
elif h.get("use_cqtd_instead_of_mrd", False): # Switch to CQTD
print(
"[INFO] using MultiScaleSubbandCQTDiscriminator of BigVGAN-v2 instead of MultiResolutionDiscriminator"
)
mrd = MultiScaleSubbandCQTDiscriminator(h).to(device)
else: # Fallback to original MRD in BigVGAN-v1
mrd = MultiResolutionDiscriminator(h).to(device)
# New in BigVGAN-v2: option to switch to multi-scale L1 mel loss
if h.get("use_multiscale_melloss", False):
print(
"[INFO] using multi-scale Mel l1 loss of BigVGAN-v2 instead of the original single-scale loss"
)
fn_mel_loss_multiscale = MultiScaleMelSpectrogramLoss(
sampling_rate=h.sampling_rate
) # NOTE: accepts waveform as input
else:
fn_mel_loss_singlescale = F.l1_loss
# Print the model & number of parameters, and create or scan the latest checkpoint from checkpoints directory
if rank == 0:
print(generator)
print(mpd)
print(mrd)
print(f"Generator params: {sum(p.numel() for p in generator.parameters())}")
print(f"Discriminator mpd params: {sum(p.numel() for p in mpd.parameters())}")
print(f"Discriminator mrd params: {sum(p.numel() for p in mrd.parameters())}")
os.makedirs(a.checkpoint_path, exist_ok=True)
print(f"Checkpoints directory: {a.checkpoint_path}")
if os.path.isdir(a.checkpoint_path):
# New in v2.1: If the step prefix pattern-based checkpoints are not found, also check for renamed files in Hugging Face Hub to resume training
cp_g = scan_checkpoint(
a.checkpoint_path, prefix="g_", renamed_file="bigvgan_generator.pt"
)
cp_do = scan_checkpoint(
a.checkpoint_path,
prefix="do_",
renamed_file="bigvgan_discriminator_optimizer.pt",
)
# Load the latest checkpoint if exists
steps = 0
if cp_g is None or cp_do is None:
state_dict_do = None
last_epoch = -1
else:
state_dict_g = load_checkpoint(cp_g, device)
state_dict_do = load_checkpoint(cp_do, device)
generator.load_state_dict(state_dict_g["generator"])
mpd.load_state_dict(state_dict_do["mpd"])
mrd.load_state_dict(state_dict_do["mrd"])
steps = state_dict_do["steps"] + 1
last_epoch = state_dict_do["epoch"]
# Initialize DDP, optimizers, and schedulers
if h.num_gpus > 1:
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
mrd = DistributedDataParallel(mrd, device_ids=[rank]).to(device)
optim_g = torch.optim.AdamW(
generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]
)
optim_d = torch.optim.AdamW(
itertools.chain(mrd.parameters(), mpd.parameters()),
h.learning_rate,
betas=[h.adam_b1, h.adam_b2],
)
if state_dict_do is not None:
optim_g.load_state_dict(state_dict_do["optim_g"])
optim_d.load_state_dict(state_dict_do["optim_d"])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=h.lr_decay, last_epoch=last_epoch
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=h.lr_decay, last_epoch=last_epoch
)
# Define training and validation datasets
"""
unseen_validation_filelist will contain sample filepaths outside the seen training & validation dataset
Example: trained on LibriTTS, validate on VCTK
"""
training_filelist, validation_filelist, list_unseen_validation_filelist = (
get_dataset_filelist(a)
)
trainset = MelDataset(
training_filelist,
h,
h.segment_size,
h.n_fft,
h.num_mels,
h.hop_size,
h.win_size,
h.sampling_rate,
h.fmin,
h.fmax,
shuffle=False if h.num_gpus > 1 else True,
fmax_loss=h.fmax_for_loss,
device=device,
fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir,
is_seen=True,
)
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
train_loader = DataLoader(
trainset,
num_workers=h.num_workers,
shuffle=False,
sampler=train_sampler,
batch_size=h.batch_size,
pin_memory=True,
drop_last=True,
)
if rank == 0:
validset = MelDataset(
validation_filelist,
h,
h.segment_size,
h.n_fft,
h.num_mels,
h.hop_size,
h.win_size,
h.sampling_rate,
h.fmin,
h.fmax,
False,
False,
fmax_loss=h.fmax_for_loss,
device=device,
fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir,
is_seen=True,
)
validation_loader = DataLoader(
validset,
num_workers=1,
shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True,
)
list_unseen_validset = []
list_unseen_validation_loader = []
for i in range(len(list_unseen_validation_filelist)):
unseen_validset = MelDataset(
list_unseen_validation_filelist[i],
h,
h.segment_size,
h.n_fft,
h.num_mels,
h.hop_size,
h.win_size,
h.sampling_rate,
h.fmin,
h.fmax,
False,
False,
fmax_loss=h.fmax_for_loss,
device=device,
fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir,
is_seen=False,
)
unseen_validation_loader = DataLoader(
unseen_validset,
num_workers=1,
shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True,
)
list_unseen_validset.append(unseen_validset)
list_unseen_validation_loader.append(unseen_validation_loader)
# Tensorboard logger
sw = SummaryWriter(os.path.join(a.checkpoint_path, "logs"))
if a.save_audio: # Also save audio to disk if --save_audio is set to True
os.makedirs(os.path.join(a.checkpoint_path, "samples"), exist_ok=True)
"""
Validation loop, "mode" parameter is automatically defined as (seen or unseen)_(name of the dataset).
If the name of the dataset contains "nonspeech", it skips PESQ calculation to prevent errors
"""
def validate(rank, a, h, loader, mode="seen"):
assert rank == 0, "validate should only run on rank=0"
generator.eval()
torch.cuda.empty_cache()
val_err_tot = 0
val_pesq_tot = 0
val_mrstft_tot = 0
# Modules for evaluation metrics
pesq_resampler = ta.transforms.Resample(h.sampling_rate, 16000).cuda()
loss_mrstft = auraloss.freq.MultiResolutionSTFTLoss(device="cuda")
if a.save_audio: # Also save audio to disk if --save_audio is set to True
os.makedirs(
os.path.join(a.checkpoint_path, "samples", f"gt_{mode}"),
exist_ok=True,
)
os.makedirs(
os.path.join(a.checkpoint_path, "samples", f"{mode}_{steps:08d}"),
exist_ok=True,
)
with torch.no_grad():
print(f"step {steps} {mode} speaker validation...")
# Loop over validation set and compute metrics
for j, batch in enumerate(tqdm(loader)):
x, y, _, y_mel = batch
y = y.to(device)
if hasattr(generator, "module"):
y_g_hat = generator.module(x.to(device))
else:
y_g_hat = generator(x.to(device))
y_mel = y_mel.to(device, non_blocking=True)
y_g_hat_mel = mel_spectrogram(
y_g_hat.squeeze(1),
h.n_fft,
h.num_mels,
h.sampling_rate,
h.hop_size,
h.win_size,
h.fmin,
h.fmax_for_loss,
)
min_t = min(y_mel.size(-1), y_g_hat_mel.size(-1))
val_err_tot += F.l1_loss(y_mel[...,:min_t], y_g_hat_mel[...,:min_t]).item()
# PESQ calculation. only evaluate PESQ if it's speech signal (nonspeech PESQ will error out)
if (
not "nonspeech" in mode
): # Skips if the name of dataset (in mode string) contains "nonspeech"
# Resample to 16000 for pesq
y_16k = pesq_resampler(y)
y_g_hat_16k = pesq_resampler(y_g_hat.squeeze(1))
y_int_16k = (y_16k[0] * MAX_WAV_VALUE).short().cpu().numpy()
y_g_hat_int_16k = (
(y_g_hat_16k[0] * MAX_WAV_VALUE).short().cpu().numpy()
)
val_pesq_tot += pesq(16000, y_int_16k, y_g_hat_int_16k, "wb")
# MRSTFT calculation
min_t = min(y.size(-1), y_g_hat.size(-1))
val_mrstft_tot += loss_mrstft(y_g_hat[...,:min_t], y[...,:min_t]).item()
# Log audio and figures to Tensorboard
if j % a.eval_subsample == 0: # Subsample every nth from validation set
if steps >= 0:
sw.add_audio(f"gt_{mode}/y_{j}", y[0], steps, h.sampling_rate)
if (
a.save_audio
): # Also save audio to disk if --save_audio is set to True
save_audio(
y[0],
os.path.join(
a.checkpoint_path,
"samples",
f"gt_{mode}",
f"{j:04d}.wav",
),
h.sampling_rate,
)
sw.add_figure(
f"gt_{mode}/y_spec_{j}",
plot_spectrogram(x[0]),
steps,
)
sw.add_audio(
f"generated_{mode}/y_hat_{j}",
y_g_hat[0],
steps,
h.sampling_rate,
)
if (
a.save_audio
): # Also save audio to disk if --save_audio is set to True
save_audio(
y_g_hat[0, 0],
os.path.join(
a.checkpoint_path,
"samples",
f"{mode}_{steps:08d}",
f"{j:04d}.wav",
),
h.sampling_rate,
)
# Spectrogram of synthesized audio
y_hat_spec = mel_spectrogram(
y_g_hat.squeeze(1),
h.n_fft,
h.num_mels,
h.sampling_rate,
h.hop_size,
h.win_size,
h.fmin,
h.fmax,
)
sw.add_figure(
f"generated_{mode}/y_hat_spec_{j}",
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()),
steps,
)
"""
Visualization of spectrogram difference between GT and synthesized audio, difference higher than 1 is clipped for better visualization.
"""
spec_delta = torch.clamp(
torch.abs(x[0] - y_hat_spec.squeeze(0).cpu()),
min=1e-6,
max=1.0,
)
sw.add_figure(
f"delta_dclip1_{mode}/spec_{j}",
plot_spectrogram_clipped(spec_delta.numpy(), clip_max=1.0),
steps,
)
val_err = val_err_tot / (j + 1)
val_pesq = val_pesq_tot / (j + 1)
val_mrstft = val_mrstft_tot / (j + 1)
# Log evaluation metrics to Tensorboard
sw.add_scalar(f"validation_{mode}/mel_spec_error", val_err, steps)
sw.add_scalar(f"validation_{mode}/pesq", val_pesq, steps)
sw.add_scalar(f"validation_{mode}/mrstft", val_mrstft, steps)
generator.train()
# If the checkpoint is loaded, start with validation loop
if steps != 0 and rank == 0 and not a.debug:
if not a.skip_seen:
validate(
rank,
a,
h,
validation_loader,
mode=f"seen_{train_loader.dataset.name}",
)
for i in range(len(list_unseen_validation_loader)):
validate(
rank,
a,
h,
list_unseen_validation_loader[i],
mode=f"unseen_{list_unseen_validation_loader[i].dataset.name}",
)
# Exit the script if --evaluate is set to True
if a.evaluate:
exit()
# Main training loop
generator.train()
mpd.train()
mrd.train()
for epoch in range(max(0, last_epoch), a.training_epochs):
if rank == 0:
start = time.time()
print(f"Epoch: {epoch + 1}")
if h.num_gpus > 1:
train_sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader):
if rank == 0:
start_b = time.time()
x, y, _, y_mel = batch
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
y_mel = y_mel.to(device, non_blocking=True)
y = y.unsqueeze(1)
y_g_hat = generator(x)
y_g_hat_mel = mel_spectrogram(
y_g_hat.squeeze(1),
h.n_fft,
h.num_mels,
h.sampling_rate,
h.hop_size,
h.win_size,
h.fmin,
h.fmax_for_loss,
)
optim_d.zero_grad()
# MPD
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
y_df_hat_r, y_df_hat_g
)
# MRD
y_ds_hat_r, y_ds_hat_g, _, _ = mrd(y, y_g_hat.detach())
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
y_ds_hat_r, y_ds_hat_g
)
loss_disc_all = loss_disc_s + loss_disc_f
# Set clip_grad_norm value
clip_grad_norm = h.get("clip_grad_norm", 1000.0) # Default to 1000
# Whether to freeze D for initial training steps
if steps >= a.freeze_step:
loss_disc_all.backward()
grad_norm_mpd = torch.nn.utils.clip_grad_norm_(
mpd.parameters(), clip_grad_norm
)
grad_norm_mrd = torch.nn.utils.clip_grad_norm_(
mrd.parameters(), clip_grad_norm
)
optim_d.step()
else:
print(
f"[WARNING] skipping D training for the first {a.freeze_step} steps"
)
grad_norm_mpd = 0.0
grad_norm_mrd = 0.0
# Generator
optim_g.zero_grad()
# L1 Mel-Spectrogram Loss
lambda_melloss = h.get(
"lambda_melloss", 45.0
) # Defaults to 45 in BigVGAN-v1 if not set
if h.get("use_multiscale_melloss", False): # uses wav <y, y_g_hat> for loss
loss_mel = fn_mel_loss_multiscale(y, y_g_hat) * lambda_melloss
else: # Uses mel <y_mel, y_g_hat_mel> for loss
loss_mel = fn_mel_loss_singlescale(y_mel, y_g_hat_mel) * lambda_melloss
# MPD loss
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
# MRD loss
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = mrd(y, y_g_hat)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
if steps >= a.freeze_step:
loss_gen_all = (
loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
)
else:
print(
f"[WARNING] using regression loss only for G for the first {a.freeze_step} steps"
)
loss_gen_all = loss_mel
loss_gen_all.backward()
grad_norm_g = torch.nn.utils.clip_grad_norm_(
generator.parameters(), clip_grad_norm
)
optim_g.step()
if rank == 0:
# STDOUT logging
if steps % a.stdout_interval == 0:
mel_error = (
loss_mel.item() / lambda_melloss
) # Log training mel regression loss to stdout
print(
f"Steps: {steps:d}, "
f"Gen Loss Total: {loss_gen_all:4.3f}, "
f"Mel Error: {mel_error:4.3f}, "
f"s/b: {time.time() - start_b:4.3f} "
f"lr: {optim_g.param_groups[0]['lr']:4.7f} "
f"grad_norm_g: {grad_norm_g:4.3f}"
)
# Checkpointing
if steps % a.checkpoint_interval == 0 and steps != 0:
checkpoint_path = f"{a.checkpoint_path}/g_{steps:08d}"
save_checkpoint(
checkpoint_path,
{
"generator": (
generator.module if h.num_gpus > 1 else generator
).state_dict()
},
)
checkpoint_path = f"{a.checkpoint_path}/do_{steps:08d}"
save_checkpoint(
checkpoint_path,
{
"mpd": (mpd.module if h.num_gpus > 1 else mpd).state_dict(),
"mrd": (mrd.module if h.num_gpus > 1 else mrd).state_dict(),
"optim_g": optim_g.state_dict(),
"optim_d": optim_d.state_dict(),
"steps": steps,
"epoch": epoch,
},
)
# Tensorboard summary logging
if steps % a.summary_interval == 0:
mel_error = (
loss_mel.item() / lambda_melloss
) # Log training mel regression loss to tensorboard
sw.add_scalar("training/gen_loss_total", loss_gen_all.item(), steps)
sw.add_scalar("training/mel_spec_error", mel_error, steps)
sw.add_scalar("training/fm_loss_mpd", loss_fm_f.item(), steps)
sw.add_scalar("training/gen_loss_mpd", loss_gen_f.item(), steps)
sw.add_scalar("training/disc_loss_mpd", loss_disc_f.item(), steps)
sw.add_scalar("training/grad_norm_mpd", grad_norm_mpd, steps)
sw.add_scalar("training/fm_loss_mrd", loss_fm_s.item(), steps)
sw.add_scalar("training/gen_loss_mrd", loss_gen_s.item(), steps)
sw.add_scalar("training/disc_loss_mrd", loss_disc_s.item(), steps)
sw.add_scalar("training/grad_norm_mrd", grad_norm_mrd, steps)
sw.add_scalar("training/grad_norm_g", grad_norm_g, steps)
sw.add_scalar(
"training/learning_rate_d", scheduler_d.get_last_lr()[0], steps
)
sw.add_scalar(
"training/learning_rate_g", scheduler_g.get_last_lr()[0], steps
)
sw.add_scalar("training/epoch", epoch + 1, steps)
# Validation
if steps % a.validation_interval == 0:
# Plot training input x so far used
for i_x in range(x.shape[0]):
sw.add_figure(
f"training_input/x_{i_x}",
plot_spectrogram(x[i_x].cpu()),
steps,
)
sw.add_audio(
f"training_input/y_{i_x}",
y[i_x][0],
steps,
h.sampling_rate,
)
# Seen and unseen speakers validation loops
if not a.debug and steps != 0:
validate(
rank,
a,
h,
validation_loader,
mode=f"seen_{train_loader.dataset.name}",
)
for i in range(len(list_unseen_validation_loader)):
validate(
rank,
a,
h,
list_unseen_validation_loader[i],
mode=f"unseen_{list_unseen_validation_loader[i].dataset.name}",
)
steps += 1
# BigVGAN-v2 learning rate scheduler is changed from epoch-level to step-level
scheduler_g.step()
scheduler_d.step()
if rank == 0:
print(
f"Time taken for epoch {epoch + 1} is {int(time.time() - start)} sec\n"
)
def main():
print("Initializing Training Process..")
parser = argparse.ArgumentParser()
parser.add_argument("--group_name", default=None)
parser.add_argument("--input_wavs_dir", default="LibriTTS")
parser.add_argument("--input_mels_dir", default="ft_dataset")
parser.add_argument(
"--input_training_file", default="tests/LibriTTS/train-full.txt"
)
parser.add_argument(
"--input_validation_file", default="tests/LibriTTS/val-full.txt"
)
parser.add_argument(
"--list_input_unseen_wavs_dir",
nargs="+",
default=["tests/LibriTTS", "tests/LibriTTS"],
)
parser.add_argument(
"--list_input_unseen_validation_file",
nargs="+",
default=["tests/LibriTTS/dev-clean.txt", "tests/LibriTTS/dev-other.txt"],
)
parser.add_argument("--checkpoint_path", default="exp/bigvgan")
parser.add_argument("--config", default="")
parser.add_argument("--training_epochs", default=100000, type=int)
parser.add_argument("--stdout_interval", default=5, type=int)
parser.add_argument("--checkpoint_interval", default=50000, type=int)
parser.add_argument("--summary_interval", default=100, type=int)
parser.add_argument("--validation_interval", default=50000, type=int)
parser.add_argument(
"--freeze_step",
default=0,
type=int,
help="freeze D for the first specified steps. G only uses regression loss for these steps.",
)
parser.add_argument("--fine_tuning", default=False, type=bool)
parser.add_argument(
"--debug",
default=False,
type=bool,
help="debug mode. skips validation loop throughout training",
)
parser.add_argument(
"--evaluate",
default=False,
type=bool,
help="only run evaluation from checkpoint and exit",
)
parser.add_argument(
"--eval_subsample",
default=5,
type=int,
help="subsampling during evaluation loop",
)
parser.add_argument(
"--skip_seen",
default=False,
type=bool,
help="skip seen dataset. useful for test set inference",
)
parser.add_argument(
"--save_audio",
default=False,
type=bool,
help="save audio of test set inference to disk",
)
a = parser.parse_args()
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, "config.json", a.checkpoint_path)
torch.manual_seed(h.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
h.num_gpus = torch.cuda.device_count()
h.batch_size = int(h.batch_size / h.num_gpus)
print(f"Batch size per GPU: {h.batch_size}")
else:
pass
if h.num_gpus > 1:
mp.spawn(
train,
nprocs=h.num_gpus,
args=(
a,
h,
),
)
else:
train(0, a, h)
if __name__ == "__main__":
main()
|