Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,400 Bytes
5017efb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
## BigVGAN: A Universal Neural Vocoder with Large-Scale Training
#### Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, Sungroh Yoon
[[Paper]](https://arxiv.org/abs/2206.04658) - [[Code]](https://github.com/NVIDIA/BigVGAN) - [[Showcase]](https://bigvgan-demo.github.io/) - [[Project Page]](https://research.nvidia.com/labs/adlr/projects/bigvgan/) - [[Weights]](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a) - [[Demo]](https://huggingface.co/spaces/nvidia/BigVGAN)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bigvgan-a-universal-neural-vocoder-with-large/speech-synthesis-on-libritts)](https://paperswithcode.com/sota/speech-synthesis-on-libritts?p=bigvgan-a-universal-neural-vocoder-with-large)
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center>
## News
- **Sep 2024 (v2.4):**
- We have updated the pretrained checkpoints trained for 5M steps. This is final release of the BigVGAN-v2 checkpoints.
- **Jul 2024 (v2.3):**
- General refactor and code improvements for improved readability.
- Fully fused CUDA kernel of anti-alised activation (upsampling + activation + downsampling) with inference speed benchmark.
- **Jul 2024 (v2.2):** The repository now includes an interactive local demo using gradio.
- **Jul 2024 (v2.1):** BigVGAN is now integrated with π€ Hugging Face Hub with easy access to inference using pretrained checkpoints. We also provide an interactive demo on Hugging Face Spaces.
- **Jul 2024 (v2):** We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:
- Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.
- Improved discriminator and loss: BigVGAN-v2 is trained using a [multi-scale sub-band CQT discriminator](https://arxiv.org/abs/2311.14957) and a [multi-scale mel spectrogram loss](https://arxiv.org/abs/2306.06546).
- Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.
- We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio.
## Installation
The codebase has been tested on Python `3.10` and PyTorch `2.3.1` conda packages with either `pytorch-cuda=12.1` or `pytorch-cuda=11.8`. Below is an example command to create the conda environment:
```shell
conda create -n bigvgan python=3.10 pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
conda activate bigvgan
```
Clone the repository and install dependencies:
```shell
git clone https://github.com/NVIDIA/BigVGAN
cd BigVGAN
pip install -r requirements.txt
```
## Inference Quickstart using π€ Hugging Face Hub
Below example describes how you can use BigVGAN: load the pretrained BigVGAN generator from Hugging Face Hub, compute mel spectrogram from input waveform, and generate synthesized waveform using the mel spectrogram as the model's input.
```python
device = 'cuda'
import torch
import bigvgan
import librosa
from meldataset import get_mel_spectrogram
# instantiate the model. You can optionally set use_cuda_kernel=True for faster inference.
model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_24khz_100band_256x', use_cuda_kernel=False)
# remove weight norm in the model and set to eval mode
model.remove_weight_norm()
model = model.eval().to(device)
# load wav file and compute mel spectrogram
wav_path = '/path/to/your/audio.wav'
wav, sr = librosa.load(wav_path, sr=model.h.sampling_rate, mono=True) # wav is np.ndarray with shape [T_time] and values in [-1, 1]
wav = torch.FloatTensor(wav).unsqueeze(0) # wav is FloatTensor with shape [B(1), T_time]
# compute mel spectrogram from the ground truth audio
mel = get_mel_spectrogram(wav, model.h).to(device) # mel is FloatTensor with shape [B(1), C_mel, T_frame]
# generate waveform from mel
with torch.inference_mode():
wav_gen = model(mel) # wav_gen is FloatTensor with shape [B(1), 1, T_time] and values in [-1, 1]
wav_gen_float = wav_gen.squeeze(0).cpu() # wav_gen is FloatTensor with shape [1, T_time]
# you can convert the generated waveform to 16 bit linear PCM
wav_gen_int16 = (wav_gen_float * 32767.0).numpy().astype('int16') # wav_gen is now np.ndarray with shape [1, T_time] and int16 dtype
```
## Local gradio demo <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>
You can run a local gradio demo using below command:
```python
pip install -r demo/requirements.txt
python demo/app.py
```
## Training
Create symbolic link to the root of the dataset. The codebase uses filelist with the relative path from the dataset. Below are the example commands for LibriTTS dataset:
```shell
cd filelists/LibriTTS && \
ln -s /path/to/your/LibriTTS/train-clean-100 train-clean-100 && \
ln -s /path/to/your/LibriTTS/train-clean-360 train-clean-360 && \
ln -s /path/to/your/LibriTTS/train-other-500 train-other-500 && \
ln -s /path/to/your/LibriTTS/dev-clean dev-clean && \
ln -s /path/to/your/LibriTTS/dev-other dev-other && \
ln -s /path/to/your/LibriTTS/test-clean test-clean && \
ln -s /path/to/your/LibriTTS/test-other test-other && \
cd ../..
```
Train BigVGAN model. Below is an example command for training BigVGAN-v2 using LibriTTS dataset at 24kHz with a full 100-band mel spectrogram as input:
```shell
python train.py \
--config configs/bigvgan_v2_24khz_100band_256x.json \
--input_wavs_dir filelists/LibriTTS \
--input_training_file filelists/LibriTTS/train-full.txt \
--input_validation_file filelists/LibriTTS/val-full.txt \
--list_input_unseen_wavs_dir filelists/LibriTTS filelists/LibriTTS \
--list_input_unseen_validation_file filelists/LibriTTS/dev-clean.txt filelists/LibriTTS/dev-other.txt \
--checkpoint_path exp/bigvgan_v2_24khz_100band_256x
```
## Synthesis
Synthesize from BigVGAN model. Below is an example command for generating audio from the model.
It computes mel spectrograms using wav files from `--input_wavs_dir` and saves the generated audio to `--output_dir`.
```shell
python inference.py \
--checkpoint_file /path/to/your/bigvgan_v2_24khz_100band_256x/bigvgan_generator.pt \
--input_wavs_dir /path/to/your/input_wav \
--output_dir /path/to/your/output_wav
```
`inference_e2e.py` supports synthesis directly from the mel spectrogram saved in `.npy` format, with shapes `[1, channel, frame]` or `[channel, frame]`.
It loads mel spectrograms from `--input_mels_dir` and saves the generated audio to `--output_dir`.
Make sure that the STFT hyperparameters for mel spectrogram are the same as the model, which are defined in `config.json` of the corresponding model.
```shell
python inference_e2e.py \
--checkpoint_file /path/to/your/bigvgan_v2_24khz_100band_256x/bigvgan_generator.pt \
--input_mels_dir /path/to/your/input_mel \
--output_dir /path/to/your/output_wav
```
## Using Custom CUDA Kernel for Synthesis
You can apply the fast CUDA inference kernel by using a parameter `use_cuda_kernel` when instantiating BigVGAN:
```python
generator = BigVGAN(h, use_cuda_kernel=True)
```
You can also pass `--use_cuda_kernel` to `inference.py` and `inference_e2e.py` to enable this feature.
When applied for the first time, it builds the kernel using `nvcc` and `ninja`. If the build succeeds, the kernel is saved to `alias_free_activation/cuda/build` and the model automatically loads the kernel. The codebase has been tested using CUDA `12.1`.
Please make sure that both are installed in your system and `nvcc` installed in your system matches the version your PyTorch build is using.
We recommend running `test_cuda_vs_torch_model.py` first to build and check the correctness of the CUDA kernel. See below example command and its output, where it returns `[Success] test CUDA fused vs. plain torch BigVGAN inference`:
```python
python tests/test_cuda_vs_torch_model.py \
--checkpoint_file /path/to/your/bigvgan_generator.pt
```
```shell
loading plain Pytorch BigVGAN
...
loading CUDA kernel BigVGAN with auto-build
Detected CUDA files, patching ldflags
Emitting ninja build file /path/to/your/BigVGAN/alias_free_activation/cuda/build/build.ninja..
Building extension module anti_alias_activation_cuda...
...
Loading extension module anti_alias_activation_cuda...
...
Loading '/path/to/your/bigvgan_generator.pt'
...
[Success] test CUDA fused vs. plain torch BigVGAN inference
> mean_difference=0.0007238413265440613
...
```
If you see `[Fail] test CUDA fused vs. plain torch BigVGAN inference`, it means that the CUDA kernel inference is incorrect. Please check if `nvcc` installed in your system is compatible with your PyTorch version.
## Pretrained Models
We provide the [pretrained models on Hugging Face Collections](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a).
One can download the checkpoints of the generator weight (named `bigvgan_generator.pt`) and its discriminator/optimizer states (named `bigvgan_discriminator_optimizer.pt`) within the listed model repositories.
| Model Name | Sampling Rate | Mel band | fmax | Upsampling Ratio | Params | Dataset | Steps | Fine-Tuned |
|:--------------------------------------------------------------------------------------------------------:|:-------------:|:--------:|:-----:|:----------------:|:------:|:--------------------------:|:-----:|:----------:|
| [bigvgan_v2_44khz_128band_512x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_512x) | 44 kHz | 128 | 22050 | 512 | 122M | Large-scale Compilation | 5M | No |
| [bigvgan_v2_44khz_128band_256x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_256x) | 44 kHz | 128 | 22050 | 256 | 112M | Large-scale Compilation | 5M | No |
| [bigvgan_v2_24khz_100band_256x](https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x) | 24 kHz | 100 | 12000 | 256 | 112M | Large-scale Compilation | 5M | No |
| [bigvgan_v2_22khz_80band_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_256x) | 22 kHz | 80 | 11025 | 256 | 112M | Large-scale Compilation | 5M | No |
| [bigvgan_v2_22khz_80band_fmax8k_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_fmax8k_256x) | 22 kHz | 80 | 8000 | 256 | 112M | Large-scale Compilation | 5M | No |
| [bigvgan_24khz_100band](https://huggingface.co/nvidia/bigvgan_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 112M | LibriTTS | 5M | No |
| [bigvgan_base_24khz_100band](https://huggingface.co/nvidia/bigvgan_base_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 14M | LibriTTS | 5M | No |
| [bigvgan_22khz_80band](https://huggingface.co/nvidia/bigvgan_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 112M | LibriTTS + VCTK + LJSpeech | 5M | No |
| [bigvgan_base_22khz_80band](https://huggingface.co/nvidia/bigvgan_base_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 14M | LibriTTS + VCTK + LJSpeech | 5M | No |
The paper results are based on the original 24kHz BigVGAN models (`bigvgan_24khz_100band` and `bigvgan_base_24khz_100band`) trained on LibriTTS dataset.
We also provide 22kHz BigVGAN models with band-limited setup (i.e., fmax=8000) for TTS applications.
Note that the checkpoints use `snakebeta` activation with log scale parameterization, which have the best overall quality.
You can fine-tune the models by:
1. downloading the checkpoints (both the generator weight and its discriminator/optimizer states)
2. resuming training using your audio dataset by specifying `--checkpoint_path` that includes the checkpoints when launching `train.py`
## Training Details of BigVGAN-v2
Comapred to the original BigVGAN, the pretrained checkpoints of BigVGAN-v2 used `batch_size=32` with a longer `segment_size=65536` and are trained using 8 A100 GPUs.
Note that the BigVGAN-v2 `json` config files in `./configs` use `batch_size=4` as default to fit in a single A100 GPU for training. You can fine-tune the models adjusting `batch_size` depending on your GPUs.
When training BigVGAN-v2 from scratch with small batch size, it can potentially encounter the early divergence problem mentioned in the paper. In such case, we recommend lowering the `clip_grad_norm` value (e.g. `100`) for the early training iterations (e.g. 20000 steps) and increase the value to the default `500`.
## Evaluation Results of BigVGAN-v2
Below are the objective results of the 24kHz model (`bigvgan_v2_24khz_100band_256x`) obtained from the LibriTTS `dev` sets. BigVGAN-v2 shows noticeable improvements of the metrics. The model also exhibits reduced perceptual artifacts, especially for non-speech audio.
| Model | Dataset | Steps | PESQ(β) | M-STFT(β) | MCD(β) | Periodicity(β) | V/UV F1(β) |
|:----------:|:-----------------------:|:-----:|:---------:|:----------:|:----------:|:--------------:|:----------:|
| BigVGAN | LibriTTS | 1M | 4.027 | 0.7997 | 0.3745 | 0.1018 | 0.9598 |
| BigVGAN | LibriTTS | 5M | 4.256 | 0.7409 | 0.2988 | 0.0809 | 0.9698 |
| BigVGAN-v2 | Large-scale Compilation | 3M | 4.359 | 0.7134 | 0.3060 | 0.0621 | 0.9777 |
| BigVGAN-v2 | Large-scale Compilation | 5M | **4.362** | **0.7026** | **0.2903** | **0.0593** | **0.9793** |
## Speed Benchmark
Below are the speed and VRAM usage benchmark results of BigVGAN from `tests/test_cuda_vs_torch_model.py`, using `bigvgan_v2_24khz_100band_256x` as a reference model.
| GPU | num_mel_frame | use_cuda_kernel | Speed (kHz) | Real-time Factor | VRAM (GB) |
|:--------------------------:|:-------------:|:---------------:|:-----------:|:----------------:|:---------:|
| NVIDIA A100 | 256 | False | 1672.1 | 69.7x | 1.3 |
| | | True | 3916.5 | 163.2x | 1.3 |
| | 2048 | False | 1899.6 | 79.2x | 1.7 |
| | | True | 5330.1 | 222.1x | 1.7 |
| | 16384 | False | 1973.8 | 82.2x | 5.0 |
| | | True | 5761.7 | 240.1x | 4.4 |
| NVIDIA GeForce RTX 3080 | 256 | False | 841.1 | 35.0x | 1.3 |
| | | True | 1598.1 | 66.6x | 1.3 |
| | 2048 | False | 929.9 | 38.7x | 1.7 |
| | | True | 1971.3 | 82.1x | 1.6 |
| | 16384 | False | 943.4 | 39.3x | 5.0 |
| | | True | 2026.5 | 84.4x | 3.9 |
| NVIDIA GeForce RTX 2080 Ti | 256 | False | 515.6 | 21.5x | 1.3 |
| | | True | 811.3 | 33.8x | 1.3 |
| | 2048 | False | 576.5 | 24.0x | 1.7 |
| | | True | 1023.0 | 42.6x | 1.5 |
| | 16384 | False | 589.4 | 24.6x | 5.0 |
| | | True | 1068.1 | 44.5x | 3.2 |
## Acknowledgements
We thank Vijay Anand Korthikanti and Kevin J. Shih for their generous support in implementing the CUDA kernel for inference.
## References
- [HiFi-GAN](https://github.com/jik876/hifi-gan) (for generator and multi-period discriminator)
- [Snake](https://github.com/EdwardDixon/snake) (for periodic activation)
- [Alias-free-torch](https://github.com/junjun3518/alias-free-torch) (for anti-aliasing)
- [Julius](https://github.com/adefossez/julius) (for low-pass filter)
- [UnivNet](https://github.com/mindslab-ai/univnet) (for multi-resolution discriminator)
- [descript-audio-codec](https://github.com/descriptinc/descript-audio-codec) and [vocos](https://github.com/gemelo-ai/vocos) (for multi-band multi-scale STFT discriminator and multi-scale mel spectrogram loss)
- [Amphion](https://github.com/open-mmlab/Amphion) (for multi-scale sub-band CQT discriminator)
|