Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
import math | |
import os | |
import random | |
import torch | |
import torch.utils.data | |
import numpy as np | |
import librosa | |
from librosa.filters import mel as librosa_mel_fn | |
import pathlib | |
from tqdm import tqdm | |
from typing import List, Tuple, Optional | |
from .env import AttrDict | |
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases) | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) | |
def dynamic_range_decompression(x, C=1): | |
return np.exp(x) / C | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
return dynamic_range_compression_torch(magnitudes) | |
def spectral_de_normalize_torch(magnitudes): | |
return dynamic_range_decompression_torch(magnitudes) | |
mel_basis_cache = {} | |
hann_window_cache = {} | |
def mel_spectrogram( | |
y: torch.Tensor, | |
n_fft: int, | |
num_mels: int, | |
sampling_rate: int, | |
hop_size: int, | |
win_size: int, | |
fmin: int, | |
fmax: int = None, | |
center: bool = False, | |
) -> torch.Tensor: | |
""" | |
Calculate the mel spectrogram of an input signal. | |
This function uses slaney norm for the librosa mel filterbank (using librosa.filters.mel) and uses Hann window for STFT (using torch.stft). | |
Args: | |
y (torch.Tensor): Input signal. | |
n_fft (int): FFT size. | |
num_mels (int): Number of mel bins. | |
sampling_rate (int): Sampling rate of the input signal. | |
hop_size (int): Hop size for STFT. | |
win_size (int): Window size for STFT. | |
fmin (int): Minimum frequency for mel filterbank. | |
fmax (int): Maximum frequency for mel filterbank. If None, defaults to half the sampling rate (fmax = sr / 2.0) inside librosa_mel_fn | |
center (bool): Whether to pad the input to center the frames. Default is False. | |
Returns: | |
torch.Tensor: Mel spectrogram. | |
""" | |
if torch.min(y) < -1.0: | |
print(f"[WARNING] Min value of input waveform signal is {torch.min(y)}") | |
if torch.max(y) > 1.0: | |
print(f"[WARNING] Max value of input waveform signal is {torch.max(y)}") | |
device = y.device | |
key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}" | |
if key not in mel_basis_cache: | |
mel = librosa_mel_fn( | |
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax | |
) | |
mel_basis_cache[key] = torch.from_numpy(mel).float().to(device) | |
hann_window_cache[key] = torch.hann_window(win_size).to(device) | |
mel_basis = mel_basis_cache[key] | |
hann_window = hann_window_cache[key] | |
padding = (n_fft - hop_size) // 2 | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), (padding, padding), mode="reflect" | |
).squeeze(1) | |
spec = torch.stft( | |
y, | |
n_fft, | |
hop_length=hop_size, | |
win_length=win_size, | |
window=hann_window, | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9) | |
mel_spec = torch.matmul(mel_basis, spec) | |
mel_spec = spectral_normalize_torch(mel_spec) | |
return mel_spec | |
def get_mel_spectrogram(wav, h): | |
""" | |
Generate mel spectrogram from a waveform using given hyperparameters. | |
Args: | |
wav (torch.Tensor): Input waveform. | |
h: Hyperparameters object with attributes n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax. | |
Returns: | |
torch.Tensor: Mel spectrogram. | |
""" | |
return mel_spectrogram( | |
wav, | |
h.n_fft, | |
h.num_mels, | |
h.sampling_rate, | |
h.hop_size, | |
h.win_size, | |
h.fmin, | |
h.fmax, | |
) | |
def get_dataset_filelist(a): | |
training_files = [] | |
validation_files = [] | |
list_unseen_validation_files = [] | |
with open(a.input_training_file, "r", encoding="utf-8") as fi: | |
training_files = [ | |
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav") | |
for x in fi.read().split("\n") | |
if len(x) > 0 | |
] | |
print(f"first training file: {training_files[0]}") | |
with open(a.input_validation_file, "r", encoding="utf-8") as fi: | |
validation_files = [ | |
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav") | |
for x in fi.read().split("\n") | |
if len(x) > 0 | |
] | |
print(f"first validation file: {validation_files[0]}") | |
for i in range(len(a.list_input_unseen_validation_file)): | |
with open(a.list_input_unseen_validation_file[i], "r", encoding="utf-8") as fi: | |
unseen_validation_files = [ | |
os.path.join(a.list_input_unseen_wavs_dir[i], x.split("|")[0] + ".wav") | |
for x in fi.read().split("\n") | |
if len(x) > 0 | |
] | |
print( | |
f"first unseen {i}th validation fileset: {unseen_validation_files[0]}" | |
) | |
list_unseen_validation_files.append(unseen_validation_files) | |
return training_files, validation_files, list_unseen_validation_files | |
class MelDataset(torch.utils.data.Dataset): | |
def __init__( | |
self, | |
training_files: List[str], | |
hparams: AttrDict, | |
segment_size: int, | |
n_fft: int, | |
num_mels: int, | |
hop_size: int, | |
win_size: int, | |
sampling_rate: int, | |
fmin: int, | |
fmax: Optional[int], | |
split: bool = True, | |
shuffle: bool = True, | |
device: str = None, | |
fmax_loss: Optional[int] = None, | |
fine_tuning: bool = False, | |
base_mels_path: str = None, | |
is_seen: bool = True, | |
): | |
self.audio_files = training_files | |
random.seed(1234) | |
if shuffle: | |
random.shuffle(self.audio_files) | |
self.hparams = hparams | |
self.is_seen = is_seen | |
if self.is_seen: | |
self.name = pathlib.Path(self.audio_files[0]).parts[0] | |
else: | |
self.name = "-".join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/") | |
self.segment_size = segment_size | |
self.sampling_rate = sampling_rate | |
self.split = split | |
self.n_fft = n_fft | |
self.num_mels = num_mels | |
self.hop_size = hop_size | |
self.win_size = win_size | |
self.fmin = fmin | |
self.fmax = fmax | |
self.fmax_loss = fmax_loss | |
self.device = device | |
self.fine_tuning = fine_tuning | |
self.base_mels_path = base_mels_path | |
print("[INFO] checking dataset integrity...") | |
for i in tqdm(range(len(self.audio_files))): | |
assert os.path.exists( | |
self.audio_files[i] | |
), f"{self.audio_files[i]} not found" | |
def __getitem__( | |
self, index: int | |
) -> Tuple[torch.Tensor, torch.Tensor, str, torch.Tensor]: | |
try: | |
filename = self.audio_files[index] | |
# Use librosa.load that ensures loading waveform into mono with [-1, 1] float values | |
# Audio is ndarray with shape [T_time]. Disable auto-resampling here to minimize overhead | |
# The on-the-fly resampling during training will be done only for the obtained random chunk | |
audio, source_sampling_rate = librosa.load(filename, sr=None, mono=True) | |
# Main logic that uses <mel, audio> pair for training BigVGAN | |
if not self.fine_tuning: | |
if self.split: # Training step | |
# Obtain randomized audio chunk | |
if source_sampling_rate != self.sampling_rate: | |
# Adjust segment size to crop if the source sr is different | |
target_segment_size = math.ceil( | |
self.segment_size | |
* (source_sampling_rate / self.sampling_rate) | |
) | |
else: | |
target_segment_size = self.segment_size | |
# Compute upper bound index for the random chunk | |
random_chunk_upper_bound = max( | |
0, audio.shape[0] - target_segment_size | |
) | |
# Crop or pad audio to obtain random chunk with target_segment_size | |
if audio.shape[0] >= target_segment_size: | |
audio_start = random.randint(0, random_chunk_upper_bound) | |
audio = audio[audio_start : audio_start + target_segment_size] | |
else: | |
audio = np.pad( | |
audio, | |
(0, target_segment_size - audio.shape[0]), | |
mode="constant", | |
) | |
# Resample audio chunk to self.sampling rate | |
if source_sampling_rate != self.sampling_rate: | |
audio = librosa.resample( | |
audio, | |
orig_sr=source_sampling_rate, | |
target_sr=self.sampling_rate, | |
) | |
if audio.shape[0] > self.segment_size: | |
# trim last elements to match self.segment_size (e.g., 16385 for 44khz downsampled to 24khz -> 16384) | |
audio = audio[: self.segment_size] | |
else: # Validation step | |
# Resample full audio clip to target sampling rate | |
if source_sampling_rate != self.sampling_rate: | |
audio = librosa.resample( | |
audio, | |
orig_sr=source_sampling_rate, | |
target_sr=self.sampling_rate, | |
) | |
# Trim last elements to match audio length to self.hop_size * n for evaluation | |
if (audio.shape[0] % self.hop_size) != 0: | |
audio = audio[: -(audio.shape[0] % self.hop_size)] | |
# BigVGAN is trained using volume-normalized waveform | |
audio = librosa.util.normalize(audio) * 0.95 | |
# Cast ndarray to torch tensor | |
audio = torch.FloatTensor(audio) | |
audio = audio.unsqueeze(0) # [B(1), self.segment_size] | |
# Compute mel spectrogram corresponding to audio | |
mel = mel_spectrogram( | |
audio, | |
self.n_fft, | |
self.num_mels, | |
self.sampling_rate, | |
self.hop_size, | |
self.win_size, | |
self.fmin, | |
self.fmax, | |
center=False, | |
) # [B(1), self.num_mels, self.segment_size // self.hop_size] | |
# Fine-tuning logic that uses pre-computed mel. Example: Using TTS model-generated mel as input | |
else: | |
# For fine-tuning, assert that the waveform is in the defined sampling_rate | |
# Fine-tuning won't support on-the-fly resampling to be fool-proof (the dataset should have been prepared properly) | |
assert ( | |
source_sampling_rate == self.sampling_rate | |
), f"For fine_tuning, waveform must be in the spcified sampling rate {self.sampling_rate}, got {source_sampling_rate}" | |
# Cast ndarray to torch tensor | |
audio = torch.FloatTensor(audio) | |
audio = audio.unsqueeze(0) # [B(1), T_time] | |
# Load pre-computed mel from disk | |
mel = np.load( | |
os.path.join( | |
self.base_mels_path, | |
os.path.splitext(os.path.split(filename)[-1])[0] + ".npy", | |
) | |
) | |
mel = torch.from_numpy(mel) | |
if len(mel.shape) < 3: | |
mel = mel.unsqueeze(0) # ensure [B, C, T] | |
if self.split: | |
frames_per_seg = math.ceil(self.segment_size / self.hop_size) | |
if audio.size(1) >= self.segment_size: | |
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1) | |
mel = mel[:, :, mel_start : mel_start + frames_per_seg] | |
audio = audio[ | |
:, | |
mel_start | |
* self.hop_size : (mel_start + frames_per_seg) | |
* self.hop_size, | |
] | |
# Pad pre-computed mel and audio to match length to ensuring fine-tuning without error. | |
# NOTE: this may introduce a single-frame misalignment of the <pre-computed mel, audio> | |
# To remove possible misalignment, it is recommended to prepare the <pre-computed mel, audio> pair where the audio length is the integer multiple of self.hop_size | |
mel = torch.nn.functional.pad( | |
mel, (0, frames_per_seg - mel.size(2)), "constant" | |
) | |
audio = torch.nn.functional.pad( | |
audio, (0, self.segment_size - audio.size(1)), "constant" | |
) | |
# Compute mel_loss used by spectral regression objective. Uses self.fmax_loss instead (usually None) | |
mel_loss = mel_spectrogram( | |
audio, | |
self.n_fft, | |
self.num_mels, | |
self.sampling_rate, | |
self.hop_size, | |
self.win_size, | |
self.fmin, | |
self.fmax_loss, | |
center=False, | |
) # [B(1), self.num_mels, self.segment_size // self.hop_size] | |
# Shape sanity checks | |
assert ( | |
audio.shape[1] == mel.shape[2] * self.hop_size | |
and audio.shape[1] == mel_loss.shape[2] * self.hop_size | |
), f"Audio length must be mel frame length * hop_size. Got audio shape {audio.shape} mel shape {mel.shape} mel_loss shape {mel_loss.shape}" | |
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) | |
# If it encounters error during loading the data, skip this sample and load random other sample to the batch | |
except Exception as e: | |
if self.fine_tuning: | |
raise e # Terminate training if it is fine-tuning. The dataset should have been prepared properly. | |
else: | |
print( | |
f"[WARNING] Failed to load waveform, skipping! filename: {filename} Error: {e}" | |
) | |
return self[random.randrange(len(self))] | |
def __len__(self): | |
return len(self.audio_files) | |