Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv2d | |
from torch.nn.utils import weight_norm, spectral_norm | |
from torchaudio.transforms import Spectrogram, Resample | |
from env import AttrDict | |
from utils import get_padding | |
import typing | |
from typing import Optional, List, Union, Dict, Tuple | |
class DiscriminatorP(torch.nn.Module): | |
def __init__( | |
self, | |
h: AttrDict, | |
period: List[int], | |
kernel_size: int = 5, | |
stride: int = 3, | |
use_spectral_norm: bool = False, | |
): | |
super().__init__() | |
self.period = period | |
self.d_mult = h.discriminator_channel_mult | |
norm_f = weight_norm if not use_spectral_norm else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f( | |
Conv2d( | |
1, | |
int(32 * self.d_mult), | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
int(32 * self.d_mult), | |
int(128 * self.d_mult), | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
int(128 * self.d_mult), | |
int(512 * self.d_mult), | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
int(512 * self.d_mult), | |
int(1024 * self.d_mult), | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
int(1024 * self.d_mult), | |
int(1024 * self.d_mult), | |
(kernel_size, 1), | |
1, | |
padding=(2, 0), | |
) | |
), | |
] | |
) | |
self.conv_post = norm_f( | |
Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0)) | |
) | |
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, 0.1) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self, h: AttrDict): | |
super().__init__() | |
self.mpd_reshapes = h.mpd_reshapes | |
print(f"mpd_reshapes: {self.mpd_reshapes}") | |
self.discriminators = nn.ModuleList( | |
[ | |
DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) | |
for rs in self.mpd_reshapes | |
] | |
) | |
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ | |
List[torch.Tensor], | |
List[torch.Tensor], | |
List[List[torch.Tensor]], | |
List[List[torch.Tensor]], | |
]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorR(nn.Module): | |
def __init__(self, cfg: AttrDict, resolution: List[List[int]]): | |
super().__init__() | |
self.resolution = resolution | |
assert ( | |
len(self.resolution) == 3 | |
), f"MRD layer requires list with len=3, got {self.resolution}" | |
self.lrelu_slope = 0.1 | |
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm | |
if hasattr(cfg, "mrd_use_spectral_norm"): | |
print( | |
f"[INFO] overriding MRD use_spectral_norm as {cfg.mrd_use_spectral_norm}" | |
) | |
norm_f = ( | |
weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm | |
) | |
self.d_mult = cfg.discriminator_channel_mult | |
if hasattr(cfg, "mrd_channel_mult"): | |
print(f"[INFO] overriding mrd channel multiplier as {cfg.mrd_channel_mult}") | |
self.d_mult = cfg.mrd_channel_mult | |
self.convs = nn.ModuleList( | |
[ | |
norm_f(nn.Conv2d(1, int(32 * self.d_mult), (3, 9), padding=(1, 4))), | |
norm_f( | |
nn.Conv2d( | |
int(32 * self.d_mult), | |
int(32 * self.d_mult), | |
(3, 9), | |
stride=(1, 2), | |
padding=(1, 4), | |
) | |
), | |
norm_f( | |
nn.Conv2d( | |
int(32 * self.d_mult), | |
int(32 * self.d_mult), | |
(3, 9), | |
stride=(1, 2), | |
padding=(1, 4), | |
) | |
), | |
norm_f( | |
nn.Conv2d( | |
int(32 * self.d_mult), | |
int(32 * self.d_mult), | |
(3, 9), | |
stride=(1, 2), | |
padding=(1, 4), | |
) | |
), | |
norm_f( | |
nn.Conv2d( | |
int(32 * self.d_mult), | |
int(32 * self.d_mult), | |
(3, 3), | |
padding=(1, 1), | |
) | |
), | |
] | |
) | |
self.conv_post = norm_f( | |
nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)) | |
) | |
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
fmap = [] | |
x = self.spectrogram(x) | |
x = x.unsqueeze(1) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, self.lrelu_slope) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
def spectrogram(self, x: torch.Tensor) -> torch.Tensor: | |
n_fft, hop_length, win_length = self.resolution | |
x = F.pad( | |
x, | |
(int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), | |
mode="reflect", | |
) | |
x = x.squeeze(1) | |
x = torch.stft( | |
x, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
center=False, | |
return_complex=True, | |
) | |
x = torch.view_as_real(x) # [B, F, TT, 2] | |
mag = torch.norm(x, p=2, dim=-1) # [B, F, TT] | |
return mag | |
class MultiResolutionDiscriminator(nn.Module): | |
def __init__(self, cfg, debug=False): | |
super().__init__() | |
self.resolutions = cfg.resolutions | |
assert ( | |
len(self.resolutions) == 3 | |
), f"MRD requires list of list with len=3, each element having a list with len=3. Got {self.resolutions}" | |
self.discriminators = nn.ModuleList( | |
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions] | |
) | |
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ | |
List[torch.Tensor], | |
List[torch.Tensor], | |
List[List[torch.Tensor]], | |
List[List[torch.Tensor]], | |
]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(x=y) | |
y_d_g, fmap_g = d(x=y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec | |
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
class DiscriminatorB(nn.Module): | |
def __init__( | |
self, | |
window_length: int, | |
channels: int = 32, | |
hop_factor: float = 0.25, | |
bands: Tuple[Tuple[float, float], ...] = ( | |
(0.0, 0.1), | |
(0.1, 0.25), | |
(0.25, 0.5), | |
(0.5, 0.75), | |
(0.75, 1.0), | |
), | |
): | |
super().__init__() | |
self.window_length = window_length | |
self.hop_factor = hop_factor | |
self.spec_fn = Spectrogram( | |
n_fft=window_length, | |
hop_length=int(window_length * hop_factor), | |
win_length=window_length, | |
power=None, | |
) | |
n_fft = window_length // 2 + 1 | |
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] | |
self.bands = bands | |
convs = lambda: nn.ModuleList( | |
[ | |
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), | |
weight_norm( | |
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) | |
), | |
weight_norm( | |
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) | |
), | |
weight_norm( | |
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) | |
), | |
weight_norm( | |
nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1)) | |
), | |
] | |
) | |
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) | |
self.conv_post = weight_norm( | |
nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)) | |
) | |
def spectrogram(self, x: torch.Tensor) -> List[torch.Tensor]: | |
# Remove DC offset | |
x = x - x.mean(dim=-1, keepdims=True) | |
# Peak normalize the volume of input audio | |
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) | |
x = self.spec_fn(x) | |
x = torch.view_as_real(x) | |
x = x.permute(0, 3, 2, 1) # [B, F, T, C] -> [B, C, T, F] | |
# Split into bands | |
x_bands = [x[..., b[0] : b[1]] for b in self.bands] | |
return x_bands | |
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
x_bands = self.spectrogram(x.squeeze(1)) | |
fmap = [] | |
x = [] | |
for band, stack in zip(x_bands, self.band_convs): | |
for i, layer in enumerate(stack): | |
band = layer(band) | |
band = torch.nn.functional.leaky_relu(band, 0.1) | |
if i > 0: | |
fmap.append(band) | |
x.append(band) | |
x = torch.cat(x, dim=-1) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return x, fmap | |
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec | |
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
class MultiBandDiscriminator(nn.Module): | |
def __init__( | |
self, | |
h, | |
): | |
""" | |
Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec. | |
and the modified code adapted from https://github.com/gemelo-ai/vocos. | |
""" | |
super().__init__() | |
# fft_sizes (list[int]): Tuple of window lengths for FFT. Defaults to [2048, 1024, 512] if not set in h. | |
self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512]) | |
self.discriminators = nn.ModuleList( | |
[DiscriminatorB(window_length=w) for w in self.fft_sizes] | |
) | |
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ | |
List[torch.Tensor], | |
List[torch.Tensor], | |
List[List[torch.Tensor]], | |
List[List[torch.Tensor]], | |
]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(x=y) | |
y_d_g, fmap_g = d(x=y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
# Adapted from https://github.com/open-mmlab/Amphion/blob/main/models/vocoders/gan/discriminator/mssbcqtd.py under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
class DiscriminatorCQT(nn.Module): | |
def __init__(self, cfg: AttrDict, hop_length: int, n_octaves:int, bins_per_octave: int): | |
super().__init__() | |
self.cfg = cfg | |
self.filters = cfg["cqtd_filters"] | |
self.max_filters = cfg["cqtd_max_filters"] | |
self.filters_scale = cfg["cqtd_filters_scale"] | |
self.kernel_size = (3, 9) | |
self.dilations = cfg["cqtd_dilations"] | |
self.stride = (1, 2) | |
self.in_channels = cfg["cqtd_in_channels"] | |
self.out_channels = cfg["cqtd_out_channels"] | |
self.fs = cfg["sampling_rate"] | |
self.hop_length = hop_length | |
self.n_octaves = n_octaves | |
self.bins_per_octave = bins_per_octave | |
# Lazy-load | |
from nnAudio import features | |
self.cqt_transform = features.cqt.CQT2010v2( | |
sr=self.fs * 2, | |
hop_length=self.hop_length, | |
n_bins=self.bins_per_octave * self.n_octaves, | |
bins_per_octave=self.bins_per_octave, | |
output_format="Complex", | |
pad_mode="constant", | |
) | |
self.conv_pres = nn.ModuleList() | |
for _ in range(self.n_octaves): | |
self.conv_pres.append( | |
nn.Conv2d( | |
self.in_channels * 2, | |
self.in_channels * 2, | |
kernel_size=self.kernel_size, | |
padding=self.get_2d_padding(self.kernel_size), | |
) | |
) | |
self.convs = nn.ModuleList() | |
self.convs.append( | |
nn.Conv2d( | |
self.in_channels * 2, | |
self.filters, | |
kernel_size=self.kernel_size, | |
padding=self.get_2d_padding(self.kernel_size), | |
) | |
) | |
in_chs = min(self.filters_scale * self.filters, self.max_filters) | |
for i, dilation in enumerate(self.dilations): | |
out_chs = min( | |
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters | |
) | |
self.convs.append( | |
weight_norm( | |
nn.Conv2d( | |
in_chs, | |
out_chs, | |
kernel_size=self.kernel_size, | |
stride=self.stride, | |
dilation=(dilation, 1), | |
padding=self.get_2d_padding(self.kernel_size, (dilation, 1)), | |
) | |
) | |
) | |
in_chs = out_chs | |
out_chs = min( | |
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters, | |
self.max_filters, | |
) | |
self.convs.append( | |
weight_norm( | |
nn.Conv2d( | |
in_chs, | |
out_chs, | |
kernel_size=(self.kernel_size[0], self.kernel_size[0]), | |
padding=self.get_2d_padding( | |
(self.kernel_size[0], self.kernel_size[0]) | |
), | |
) | |
) | |
) | |
self.conv_post = weight_norm( | |
nn.Conv2d( | |
out_chs, | |
self.out_channels, | |
kernel_size=(self.kernel_size[0], self.kernel_size[0]), | |
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])), | |
) | |
) | |
self.activation = torch.nn.LeakyReLU(negative_slope=0.1) | |
self.resample = Resample(orig_freq=self.fs, new_freq=self.fs * 2) | |
self.cqtd_normalize_volume = self.cfg.get("cqtd_normalize_volume", False) | |
if self.cqtd_normalize_volume: | |
print( | |
f"[INFO] cqtd_normalize_volume set to True. Will apply DC offset removal & peak volume normalization in CQTD!" | |
) | |
def get_2d_padding( | |
self, | |
kernel_size: typing.Tuple[int, int], | |
dilation: typing.Tuple[int, int] = (1, 1), | |
): | |
return ( | |
((kernel_size[0] - 1) * dilation[0]) // 2, | |
((kernel_size[1] - 1) * dilation[1]) // 2, | |
) | |
def forward(self, x: torch.tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
fmap = [] | |
if self.cqtd_normalize_volume: | |
# Remove DC offset | |
x = x - x.mean(dim=-1, keepdims=True) | |
# Peak normalize the volume of input audio | |
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) | |
x = self.resample(x) | |
z = self.cqt_transform(x) | |
z_amplitude = z[:, :, :, 0].unsqueeze(1) | |
z_phase = z[:, :, :, 1].unsqueeze(1) | |
z = torch.cat([z_amplitude, z_phase], dim=1) | |
z = torch.permute(z, (0, 1, 3, 2)) # [B, C, W, T] -> [B, C, T, W] | |
latent_z = [] | |
for i in range(self.n_octaves): | |
latent_z.append( | |
self.conv_pres[i]( | |
z[ | |
:, | |
:, | |
:, | |
i * self.bins_per_octave : (i + 1) * self.bins_per_octave, | |
] | |
) | |
) | |
latent_z = torch.cat(latent_z, dim=-1) | |
for i, l in enumerate(self.convs): | |
latent_z = l(latent_z) | |
latent_z = self.activation(latent_z) | |
fmap.append(latent_z) | |
latent_z = self.conv_post(latent_z) | |
return latent_z, fmap | |
class MultiScaleSubbandCQTDiscriminator(nn.Module): | |
def __init__(self, cfg: AttrDict): | |
super().__init__() | |
self.cfg = cfg | |
# Using get with defaults | |
self.cfg["cqtd_filters"] = self.cfg.get("cqtd_filters", 32) | |
self.cfg["cqtd_max_filters"] = self.cfg.get("cqtd_max_filters", 1024) | |
self.cfg["cqtd_filters_scale"] = self.cfg.get("cqtd_filters_scale", 1) | |
self.cfg["cqtd_dilations"] = self.cfg.get("cqtd_dilations", [1, 2, 4]) | |
self.cfg["cqtd_in_channels"] = self.cfg.get("cqtd_in_channels", 1) | |
self.cfg["cqtd_out_channels"] = self.cfg.get("cqtd_out_channels", 1) | |
# Multi-scale params to loop over | |
self.cfg["cqtd_hop_lengths"] = self.cfg.get("cqtd_hop_lengths", [512, 256, 256]) | |
self.cfg["cqtd_n_octaves"] = self.cfg.get("cqtd_n_octaves", [9, 9, 9]) | |
self.cfg["cqtd_bins_per_octaves"] = self.cfg.get( | |
"cqtd_bins_per_octaves", [24, 36, 48] | |
) | |
self.discriminators = nn.ModuleList( | |
[ | |
DiscriminatorCQT( | |
self.cfg, | |
hop_length=self.cfg["cqtd_hop_lengths"][i], | |
n_octaves=self.cfg["cqtd_n_octaves"][i], | |
bins_per_octave=self.cfg["cqtd_bins_per_octaves"][i], | |
) | |
for i in range(len(self.cfg["cqtd_hop_lengths"])) | |
] | |
) | |
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ | |
List[torch.Tensor], | |
List[torch.Tensor], | |
List[List[torch.Tensor]], | |
List[List[torch.Tensor]], | |
]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for disc in self.discriminators: | |
y_d_r, fmap_r = disc(y) | |
y_d_g, fmap_g = disc(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class CombinedDiscriminator(nn.Module): | |
""" | |
Wrapper of chaining multiple discrimiantor architectures. | |
Example: combine mbd and cqtd as a single class | |
""" | |
def __init__(self, list_discriminator: List[nn.Module]): | |
super().__init__() | |
self.discrimiantor = nn.ModuleList(list_discriminator) | |
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ | |
List[torch.Tensor], | |
List[torch.Tensor], | |
List[List[torch.Tensor]], | |
List[List[torch.Tensor]], | |
]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for disc in self.discrimiantor: | |
y_d_r, y_d_g, fmap_r, fmap_g = disc(y, y_hat) | |
y_d_rs.extend(y_d_r) | |
fmap_rs.extend(fmap_r) | |
y_d_gs.extend(y_d_g) | |
fmap_gs.extend(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |