VoiceRestore / BigVGAN /discriminators.py
jadechoghari's picture
add space new version
5017efb
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv2d
from torch.nn.utils import weight_norm, spectral_norm
from torchaudio.transforms import Spectrogram, Resample
from env import AttrDict
from utils import get_padding
import typing
from typing import Optional, List, Union, Dict, Tuple
class DiscriminatorP(torch.nn.Module):
def __init__(
self,
h: AttrDict,
period: List[int],
kernel_size: int = 5,
stride: int = 3,
use_spectral_norm: bool = False,
):
super().__init__()
self.period = period
self.d_mult = h.discriminator_channel_mult
norm_f = weight_norm if not use_spectral_norm else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(
Conv2d(
1,
int(32 * self.d_mult),
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
)
),
norm_f(
Conv2d(
int(32 * self.d_mult),
int(128 * self.d_mult),
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
)
),
norm_f(
Conv2d(
int(128 * self.d_mult),
int(512 * self.d_mult),
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
)
),
norm_f(
Conv2d(
int(512 * self.d_mult),
int(1024 * self.d_mult),
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
)
),
norm_f(
Conv2d(
int(1024 * self.d_mult),
int(1024 * self.d_mult),
(kernel_size, 1),
1,
padding=(2, 0),
)
),
]
)
self.conv_post = norm_f(
Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0))
)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, 0.1)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, h: AttrDict):
super().__init__()
self.mpd_reshapes = h.mpd_reshapes
print(f"mpd_reshapes: {self.mpd_reshapes}")
self.discriminators = nn.ModuleList(
[
DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm)
for rs in self.mpd_reshapes
]
)
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
List[torch.Tensor],
List[torch.Tensor],
List[List[torch.Tensor]],
List[List[torch.Tensor]],
]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorR(nn.Module):
def __init__(self, cfg: AttrDict, resolution: List[List[int]]):
super().__init__()
self.resolution = resolution
assert (
len(self.resolution) == 3
), f"MRD layer requires list with len=3, got {self.resolution}"
self.lrelu_slope = 0.1
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
if hasattr(cfg, "mrd_use_spectral_norm"):
print(
f"[INFO] overriding MRD use_spectral_norm as {cfg.mrd_use_spectral_norm}"
)
norm_f = (
weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
)
self.d_mult = cfg.discriminator_channel_mult
if hasattr(cfg, "mrd_channel_mult"):
print(f"[INFO] overriding mrd channel multiplier as {cfg.mrd_channel_mult}")
self.d_mult = cfg.mrd_channel_mult
self.convs = nn.ModuleList(
[
norm_f(nn.Conv2d(1, int(32 * self.d_mult), (3, 9), padding=(1, 4))),
norm_f(
nn.Conv2d(
int(32 * self.d_mult),
int(32 * self.d_mult),
(3, 9),
stride=(1, 2),
padding=(1, 4),
)
),
norm_f(
nn.Conv2d(
int(32 * self.d_mult),
int(32 * self.d_mult),
(3, 9),
stride=(1, 2),
padding=(1, 4),
)
),
norm_f(
nn.Conv2d(
int(32 * self.d_mult),
int(32 * self.d_mult),
(3, 9),
stride=(1, 2),
padding=(1, 4),
)
),
norm_f(
nn.Conv2d(
int(32 * self.d_mult),
int(32 * self.d_mult),
(3, 3),
padding=(1, 1),
)
),
]
)
self.conv_post = norm_f(
nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1))
)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
fmap = []
x = self.spectrogram(x)
x = x.unsqueeze(1)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, self.lrelu_slope)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
def spectrogram(self, x: torch.Tensor) -> torch.Tensor:
n_fft, hop_length, win_length = self.resolution
x = F.pad(
x,
(int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)),
mode="reflect",
)
x = x.squeeze(1)
x = torch.stft(
x,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
center=False,
return_complex=True,
)
x = torch.view_as_real(x) # [B, F, TT, 2]
mag = torch.norm(x, p=2, dim=-1) # [B, F, TT]
return mag
class MultiResolutionDiscriminator(nn.Module):
def __init__(self, cfg, debug=False):
super().__init__()
self.resolutions = cfg.resolutions
assert (
len(self.resolutions) == 3
), f"MRD requires list of list with len=3, each element having a list with len=3. Got {self.resolutions}"
self.discriminators = nn.ModuleList(
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
)
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
List[torch.Tensor],
List[torch.Tensor],
List[List[torch.Tensor]],
List[List[torch.Tensor]],
]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(x=y)
y_d_g, fmap_g = d(x=y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license.
# LICENSE is in incl_licenses directory.
class DiscriminatorB(nn.Module):
def __init__(
self,
window_length: int,
channels: int = 32,
hop_factor: float = 0.25,
bands: Tuple[Tuple[float, float], ...] = (
(0.0, 0.1),
(0.1, 0.25),
(0.25, 0.5),
(0.5, 0.75),
(0.75, 1.0),
),
):
super().__init__()
self.window_length = window_length
self.hop_factor = hop_factor
self.spec_fn = Spectrogram(
n_fft=window_length,
hop_length=int(window_length * hop_factor),
win_length=window_length,
power=None,
)
n_fft = window_length // 2 + 1
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
self.bands = bands
convs = lambda: nn.ModuleList(
[
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
weight_norm(
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
),
weight_norm(
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
),
weight_norm(
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
),
weight_norm(
nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))
),
]
)
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
self.conv_post = weight_norm(
nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))
)
def spectrogram(self, x: torch.Tensor) -> List[torch.Tensor]:
# Remove DC offset
x = x - x.mean(dim=-1, keepdims=True)
# Peak normalize the volume of input audio
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
x = self.spec_fn(x)
x = torch.view_as_real(x)
x = x.permute(0, 3, 2, 1) # [B, F, T, C] -> [B, C, T, F]
# Split into bands
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
return x_bands
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
x_bands = self.spectrogram(x.squeeze(1))
fmap = []
x = []
for band, stack in zip(x_bands, self.band_convs):
for i, layer in enumerate(stack):
band = layer(band)
band = torch.nn.functional.leaky_relu(band, 0.1)
if i > 0:
fmap.append(band)
x.append(band)
x = torch.cat(x, dim=-1)
x = self.conv_post(x)
fmap.append(x)
return x, fmap
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license.
# LICENSE is in incl_licenses directory.
class MultiBandDiscriminator(nn.Module):
def __init__(
self,
h,
):
"""
Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec.
and the modified code adapted from https://github.com/gemelo-ai/vocos.
"""
super().__init__()
# fft_sizes (list[int]): Tuple of window lengths for FFT. Defaults to [2048, 1024, 512] if not set in h.
self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512])
self.discriminators = nn.ModuleList(
[DiscriminatorB(window_length=w) for w in self.fft_sizes]
)
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
List[torch.Tensor],
List[torch.Tensor],
List[List[torch.Tensor]],
List[List[torch.Tensor]],
]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for d in self.discriminators:
y_d_r, fmap_r = d(x=y)
y_d_g, fmap_g = d(x=y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
# Adapted from https://github.com/open-mmlab/Amphion/blob/main/models/vocoders/gan/discriminator/mssbcqtd.py under the MIT license.
# LICENSE is in incl_licenses directory.
class DiscriminatorCQT(nn.Module):
def __init__(self, cfg: AttrDict, hop_length: int, n_octaves:int, bins_per_octave: int):
super().__init__()
self.cfg = cfg
self.filters = cfg["cqtd_filters"]
self.max_filters = cfg["cqtd_max_filters"]
self.filters_scale = cfg["cqtd_filters_scale"]
self.kernel_size = (3, 9)
self.dilations = cfg["cqtd_dilations"]
self.stride = (1, 2)
self.in_channels = cfg["cqtd_in_channels"]
self.out_channels = cfg["cqtd_out_channels"]
self.fs = cfg["sampling_rate"]
self.hop_length = hop_length
self.n_octaves = n_octaves
self.bins_per_octave = bins_per_octave
# Lazy-load
from nnAudio import features
self.cqt_transform = features.cqt.CQT2010v2(
sr=self.fs * 2,
hop_length=self.hop_length,
n_bins=self.bins_per_octave * self.n_octaves,
bins_per_octave=self.bins_per_octave,
output_format="Complex",
pad_mode="constant",
)
self.conv_pres = nn.ModuleList()
for _ in range(self.n_octaves):
self.conv_pres.append(
nn.Conv2d(
self.in_channels * 2,
self.in_channels * 2,
kernel_size=self.kernel_size,
padding=self.get_2d_padding(self.kernel_size),
)
)
self.convs = nn.ModuleList()
self.convs.append(
nn.Conv2d(
self.in_channels * 2,
self.filters,
kernel_size=self.kernel_size,
padding=self.get_2d_padding(self.kernel_size),
)
)
in_chs = min(self.filters_scale * self.filters, self.max_filters)
for i, dilation in enumerate(self.dilations):
out_chs = min(
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters
)
self.convs.append(
weight_norm(
nn.Conv2d(
in_chs,
out_chs,
kernel_size=self.kernel_size,
stride=self.stride,
dilation=(dilation, 1),
padding=self.get_2d_padding(self.kernel_size, (dilation, 1)),
)
)
)
in_chs = out_chs
out_chs = min(
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
self.max_filters,
)
self.convs.append(
weight_norm(
nn.Conv2d(
in_chs,
out_chs,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=self.get_2d_padding(
(self.kernel_size[0], self.kernel_size[0])
),
)
)
)
self.conv_post = weight_norm(
nn.Conv2d(
out_chs,
self.out_channels,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
)
)
self.activation = torch.nn.LeakyReLU(negative_slope=0.1)
self.resample = Resample(orig_freq=self.fs, new_freq=self.fs * 2)
self.cqtd_normalize_volume = self.cfg.get("cqtd_normalize_volume", False)
if self.cqtd_normalize_volume:
print(
f"[INFO] cqtd_normalize_volume set to True. Will apply DC offset removal & peak volume normalization in CQTD!"
)
def get_2d_padding(
self,
kernel_size: typing.Tuple[int, int],
dilation: typing.Tuple[int, int] = (1, 1),
):
return (
((kernel_size[0] - 1) * dilation[0]) // 2,
((kernel_size[1] - 1) * dilation[1]) // 2,
)
def forward(self, x: torch.tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
fmap = []
if self.cqtd_normalize_volume:
# Remove DC offset
x = x - x.mean(dim=-1, keepdims=True)
# Peak normalize the volume of input audio
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
x = self.resample(x)
z = self.cqt_transform(x)
z_amplitude = z[:, :, :, 0].unsqueeze(1)
z_phase = z[:, :, :, 1].unsqueeze(1)
z = torch.cat([z_amplitude, z_phase], dim=1)
z = torch.permute(z, (0, 1, 3, 2)) # [B, C, W, T] -> [B, C, T, W]
latent_z = []
for i in range(self.n_octaves):
latent_z.append(
self.conv_pres[i](
z[
:,
:,
:,
i * self.bins_per_octave : (i + 1) * self.bins_per_octave,
]
)
)
latent_z = torch.cat(latent_z, dim=-1)
for i, l in enumerate(self.convs):
latent_z = l(latent_z)
latent_z = self.activation(latent_z)
fmap.append(latent_z)
latent_z = self.conv_post(latent_z)
return latent_z, fmap
class MultiScaleSubbandCQTDiscriminator(nn.Module):
def __init__(self, cfg: AttrDict):
super().__init__()
self.cfg = cfg
# Using get with defaults
self.cfg["cqtd_filters"] = self.cfg.get("cqtd_filters", 32)
self.cfg["cqtd_max_filters"] = self.cfg.get("cqtd_max_filters", 1024)
self.cfg["cqtd_filters_scale"] = self.cfg.get("cqtd_filters_scale", 1)
self.cfg["cqtd_dilations"] = self.cfg.get("cqtd_dilations", [1, 2, 4])
self.cfg["cqtd_in_channels"] = self.cfg.get("cqtd_in_channels", 1)
self.cfg["cqtd_out_channels"] = self.cfg.get("cqtd_out_channels", 1)
# Multi-scale params to loop over
self.cfg["cqtd_hop_lengths"] = self.cfg.get("cqtd_hop_lengths", [512, 256, 256])
self.cfg["cqtd_n_octaves"] = self.cfg.get("cqtd_n_octaves", [9, 9, 9])
self.cfg["cqtd_bins_per_octaves"] = self.cfg.get(
"cqtd_bins_per_octaves", [24, 36, 48]
)
self.discriminators = nn.ModuleList(
[
DiscriminatorCQT(
self.cfg,
hop_length=self.cfg["cqtd_hop_lengths"][i],
n_octaves=self.cfg["cqtd_n_octaves"][i],
bins_per_octave=self.cfg["cqtd_bins_per_octaves"][i],
)
for i in range(len(self.cfg["cqtd_hop_lengths"]))
]
)
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
List[torch.Tensor],
List[torch.Tensor],
List[List[torch.Tensor]],
List[List[torch.Tensor]],
]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for disc in self.discriminators:
y_d_r, fmap_r = disc(y)
y_d_g, fmap_g = disc(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class CombinedDiscriminator(nn.Module):
"""
Wrapper of chaining multiple discrimiantor architectures.
Example: combine mbd and cqtd as a single class
"""
def __init__(self, list_discriminator: List[nn.Module]):
super().__init__()
self.discrimiantor = nn.ModuleList(list_discriminator)
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
List[torch.Tensor],
List[torch.Tensor],
List[List[torch.Tensor]],
List[List[torch.Tensor]],
]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for disc in self.discrimiantor:
y_d_r, y_d_g, fmap_r, fmap_g = disc(y, y_hat)
y_d_rs.extend(y_d_r)
fmap_rs.extend(fmap_r)
y_d_gs.extend(y_d_g)
fmap_gs.extend(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs