# Adapted from https://github.com/jik876/hifi-gan under the MIT license. # LICENSE is in incl_licenses directory. import glob import os import matplotlib import torch from torch.nn.utils import weight_norm matplotlib.use("Agg") import matplotlib.pylab as plt from .meldataset import MAX_WAV_VALUE from scipy.io.wavfile import write def plot_spectrogram(spectrogram): fig, ax = plt.subplots(figsize=(10, 2)) im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") plt.colorbar(im, ax=ax) fig.canvas.draw() plt.close() return fig def plot_spectrogram_clipped(spectrogram, clip_max=2.0): fig, ax = plt.subplots(figsize=(10, 2)) im = ax.imshow( spectrogram, aspect="auto", origin="lower", interpolation="none", vmin=1e-6, vmax=clip_max, ) plt.colorbar(im, ax=ax) fig.canvas.draw() plt.close() return fig def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def apply_weight_norm(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: weight_norm(m) def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) def load_checkpoint(filepath, device): assert os.path.isfile(filepath) print(f"Loading '{filepath}'") checkpoint_dict = torch.load(filepath, map_location=device) print("Complete.") return checkpoint_dict def save_checkpoint(filepath, obj): print(f"Saving checkpoint to {filepath}") torch.save(obj, filepath) print("Complete.") def scan_checkpoint(cp_dir, prefix, renamed_file=None): # Fallback to original scanning logic first pattern = os.path.join(cp_dir, prefix + "????????") cp_list = glob.glob(pattern) if len(cp_list) > 0: last_checkpoint_path = sorted(cp_list)[-1] print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'") return last_checkpoint_path # If no pattern-based checkpoints are found, check for renamed file if renamed_file: renamed_path = os.path.join(cp_dir, renamed_file) if os.path.isfile(renamed_path): print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'") return renamed_path return None def save_audio(audio, path, sr): # wav: torch with 1d shape audio = audio * MAX_WAV_VALUE audio = audio.cpu().numpy().astype("int16") write(path, sr, audio)