import torch from transformers import AutoModelForImageClassification, AutoFeatureExtractor import gradio as gr model_id = f'jonathanfernandes/vit-base-patch16-224-finetuned-flower' labels = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips'] def classify_image(image): model = AutoModelForImageClassification.from_pretrained(model_id) feature_extractor = AutoFeatureExtractor.from_pretrained(model_id) inp = feature_extractor(image, return_tensors='pt') outp = model(**inp) pred = torch.nn.functional.softmax(outp.logits, dim=-1) preds = pred[0].cpu().detach().numpy() confidence = {label: float(preds[i]) for i, label in enumerate(labels)} return confidence interface = gr.Interface(fn=classify_image, inputs='image', examples=['flower-1.jpg', 'flower-2.jpeg'], outputs='label').launch()