Spaces:
Sleeping
Sleeping
File size: 7,297 Bytes
6f9cada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import pipeline
# Inference client setup
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
pipe = pipeline("text-generation", "microsoft/Phi-3.5-mini-instruct", torch_dtype=torch.bfloat16, device_map="auto")
# Global flag to handle cancellation
stop_inference = False
def respond(
message,
history: list[tuple[str, str]],
system_message="You are a friendly Chatbot. Your job is to assist users in emergencies so reply fast but accuratly.",
max_tokens=2048,
temperature=0.7,
top_p=0.95,
use_local_model=False,
):
global stop_inference
stop_inference = False # Reset cancellation flag
# Initialize history if it's None
if history is None:
history = []
if use_local_model:
# local inference
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for output in pipe(
messages,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
top_p=top_p,
):
if stop_inference:
response = "Inference cancelled."
yield history + [(message, response)]
return
token = output['generated_text'][-1]['content']
response += token
yield history + [(message, response)] # Yield history + new response
else:
# API-based inference
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message_chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if stop_inference:
response = "Inference cancelled."
yield history + [(message, response)]
return
if stop_inference:
response = "Inference cancelled."
break
token = message_chunk.choices[0].delta.content
response += token
yield history + [(message, response)] # Yield history + new response
def cancel_inference():
global stop_inference
stop_inference = True
def clear_conversation():
return None
# Custom CSS for an enhanced look
custom_css = """
body {
font-family: 'Roboto', sans-serif;
background-color: #f5f7fa;
}
#main-container {
max-width: 900px;
margin: 0 auto;
padding: 20px;
background: white;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
border-radius: 15px;
}
.gradio-container {
margin-top: 20px;
}
.gr-button {
background-color: #4a90e2;
color: white;
border: none;
border-radius: 5px;
padding: 10px 20px;
cursor: pointer;
transition: all 0.3s ease;
font-weight: bold;
}
.gr-button:hover {
background-color: #357abd;
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.gr-button.secondary {
background-color: #f0f0f0;
color: #333;
}
.gr-button.secondary:hover {
background-color: #e0e0e0;
}
.gr-button.cancel {
background-color: #e74c3c;
}
.gr-button.cancel:hover {
background-color: #c0392b;
}
.gr-form {
border: 1px solid #e0e0e0;
padding: 15px;
border-radius: 10px;
background-color: #f9f9f9;
}
.gr-box {
border-radius: 8px;
border: 1px solid #e0e0e0;
}
.gr-padded {
padding: 15px;
}
.gr-chat {
font-size: 16px;
border: 1px solid #e0e0e0;
border-radius: 10px;
overflow: hidden;
}
.gr-chat .message {
padding: 10px 15px;
border-bottom: 1px solid #f0f0f0;
}
.gr-chat .user {
background-color: #e8f0fe;
}
.gr-chat .bot {
background-color: #ffffff;
}
#title {
text-align: center;
font-size: 2.5em;
margin-bottom: 20px;
color: #2c3e50;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
"""
# Define the interface
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("<h1 id='title'>🤖 EMERGENCY RESPONSE BOT 🚀</h1>")
gr.Markdown("Engage in a conversation with our AI chatbot using customizable settings. \n It's a demo bot for a emergency response system. \n NOTE: This bot was made for educational purposes only and should not be used in real emergencies.")
with gr.Row():
with gr.Column(scale=2):
chat_history = gr.Chatbot(label="Chat", height=500)
user_input = gr.Textbox(show_label=False, placeholder="Type your message here...", lines=2)
with gr.Row():
submit_button = gr.Button("Send", variant="primary")
cancel_button = gr.Button("Cancel", variant="stop")
clear_button = gr.Button("Clear Chat", variant="secondary")
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message", interactive=True)
use_local_model = gr.Checkbox(label="Use Local Model", value=False)
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
with gr.Accordion("Chat Information", open=True):
message_count = gr.Number(label="Messages in Conversation", value=0, interactive=False)
word_count = gr.Number(label="Total Words", value=0, interactive=False)
# Event handlers
submit_button.click(respond,
[user_input, chat_history, system_message, max_tokens, temperature, top_p, use_local_model],
[chat_history])
user_input.submit(respond,
[user_input, chat_history, system_message, max_tokens, temperature, top_p, use_local_model],
[chat_history])
cancel_button.click(cancel_inference)
clear_button.click(clear_conversation, outputs=[chat_history])
# Update chat information
def update_chat_info(history):
if history is None:
return 0, 0
message_count = len(history)
word_count = sum(len(msg[0].split()) + len(msg[1].split()) for msg in history)
return message_count, word_count
chat_history.change(update_chat_info, inputs=[chat_history], outputs=[message_count, word_count])
if __name__ == "__main__":
demo.launch(share=False) # Remove share=True because it's not supported on HF Spaces |