Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import nltk | |
import sentence_transformers | |
import torch | |
from duckduckgo_search import ddg | |
from duckduckgo_search.utils import SESSION | |
from langchain.chains import RetrievalQA | |
from langchain.document_loaders import UnstructuredFileLoader | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.prompts.prompt import PromptTemplate | |
from langchain.vectorstores import FAISS | |
from chatllm import ChatLLM | |
from chinese_text_splitter import ChineseTextSplitter | |
# os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
nltk.data.path.append('./nltk_data') | |
embedding_model_dict = { | |
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh", | |
"ernie-base": "nghuyong/ernie-3.0-base-zh", | |
"text2vec-base": "GanymedeNil/text2vec-base-chinese" | |
} | |
llm_model_dict = { | |
"ChatGLM-6B-int8": "THUDM/chatglm-6b-int8", | |
"ChatGLM-6B-int4": "THUDM/chatglm-6b-int4", | |
"ChatGLM-6b-int4-qe": "THUDM/chatglm-6b-int4-qe", | |
"Minimax": "Minimax" | |
} | |
DEVICE = "cuda" if torch.cuda.is_available( | |
) else "mps" if torch.backends.mps.is_available() else "cpu" | |
def search_web(query): | |
SESSION.proxies = { | |
"http": f"socks5h://localhost:7890", | |
"https": f"socks5h://localhost:7890" | |
} | |
results = ddg(query) | |
web_content = '' | |
if results: | |
for result in results: | |
web_content += result['body'] | |
return web_content | |
def load_file(filepath): | |
if filepath.lower().endswith(".pdf"): | |
loader = UnstructuredFileLoader(filepath) | |
textsplitter = ChineseTextSplitter(pdf=True) | |
docs = loader.load_and_split(textsplitter) | |
else: | |
loader = UnstructuredFileLoader(filepath, mode="elements") | |
textsplitter = ChineseTextSplitter(pdf=False) | |
docs = loader.load_and_split(text_splitter=textsplitter) | |
return docs | |
def init_knowledge_vector_store(embedding_model, filepath): | |
embeddings = HuggingFaceEmbeddings( | |
model_name=embedding_model_dict[embedding_model], ) | |
embeddings.client = sentence_transformers.SentenceTransformer( | |
embeddings.model_name, device=DEVICE) | |
docs = load_file(filepath) | |
vector_store = FAISS.from_documents(docs, embeddings) | |
return vector_store | |
def get_knowledge_based_answer(query, | |
large_language_model, | |
vector_store, | |
VECTOR_SEARCH_TOP_K, | |
web_content, | |
history_len, | |
temperature, | |
top_p, | |
chat_history=[]): | |
if web_content: | |
prompt_template = f"""基于以下已知信息,简洁和专业的来回答用户的问题。 | |
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。 | |
已知网络检索内容:{web_content}""" + """ | |
已知内容: | |
{context} | |
问题: | |
{question}""" | |
else: | |
prompt_template = """基于以下已知信息,请简洁并专业地回答用户的问题。 | |
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息"。不允许在答案中添加编造成分。另外,答案请使用中文。 | |
已知内容: | |
{context} | |
问题: | |
{question}""" | |
prompt = PromptTemplate(template=prompt_template, | |
input_variables=["context", "question"]) | |
chatLLM = ChatLLM() | |
chatLLM.history = chat_history[-history_len:] if history_len > 0 else [] | |
if large_language_model == "Minimax": | |
chatLLM.model = 'Minimax' | |
else: | |
chatLLM.load_model(model_name_or_path=llm_model_dict[large_language_model]) | |
chatLLM.temperature = temperature | |
chatLLM.top_p = top_p | |
knowledge_chain = RetrievalQA.from_llm( | |
llm=chatLLM, | |
retriever=vector_store.as_retriever( | |
search_kwargs={"k": VECTOR_SEARCH_TOP_K}), | |
prompt=prompt) | |
knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate( | |
input_variables=["page_content"], template="{page_content}") | |
knowledge_chain.return_source_documents = True | |
result = knowledge_chain({"query": query}) | |
return result | |
def clear_session(): | |
return '', None | |
def predict(input, | |
large_language_model, | |
embedding_model, | |
file_obj, | |
VECTOR_SEARCH_TOP_K, | |
history_len, | |
temperature, | |
top_p, | |
use_web, | |
history=None): | |
if history == None: | |
history = [] | |
print(file_obj.name) | |
vector_store = init_knowledge_vector_store(embedding_model, file_obj.name) | |
if use_web == 'True': | |
web_content = search_web(query=input) | |
else: | |
web_content = '' | |
resp = get_knowledge_based_answer( | |
query=input, | |
large_language_model=large_language_model, | |
vector_store=vector_store, | |
VECTOR_SEARCH_TOP_K=VECTOR_SEARCH_TOP_K, | |
web_content=web_content, | |
chat_history=history, | |
history_len=history_len, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
print(resp) | |
history.append((input, resp['result'])) | |
return '', history, history | |
if __name__ == "__main__": | |
block = gr.Blocks() | |
with block as demo: | |
gr.Markdown("""<h1><center>LangChain-ChatLLM-Webui</center></h1> | |
<center><font size=3> | |
本项目基于LangChain和大型语言模型系列模型, 提供基于本地知识的自动问答应用. <br> | |
目前项目提供基于<a href='https://github.com/THUDM/ChatGLM-6B' target="_blank">ChatGLM-6B </a>的LLM和包括GanymedeNil/text2vec-large-chinese、nghuyong/ernie-3.0-base-zh、nghuyong/ernie-3.0-nano-zh在内的多个Embedding模型, 支持上传 txt、docx、md等文本格式文件. <br> | |
后续将提供更加多样化的LLM、Embedding和参数选项供用户尝试, 欢迎关注<a href='https://github.com/thomas-yanxin/LangChain-ChatGLM-Webui' target="_blank">Github地址</a>. | |
</center></font> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
model_choose = gr.Accordion("模型选择") | |
with model_choose: | |
large_language_model = gr.Dropdown( | |
list(llm_model_dict.keys()), | |
label="large language model", | |
value="ChatGLM-6B-int4") | |
embedding_model = gr.Dropdown(list(embedding_model_dict.keys()), | |
label="Embedding model", | |
value="text2vec-base") | |
file = gr.File(label='请上传知识库文件, 目前支持txt、docx、md格式', | |
file_types=['.txt', '.md', '.docx']) | |
use_web = gr.Radio(["True", "False"], label="Web Search", | |
value="False" | |
) | |
model_argument = gr.Accordion("模型参数配置") | |
with model_argument: | |
VECTOR_SEARCH_TOP_K = gr.Slider(1, | |
10, | |
value=6, | |
step=1, | |
label="vector search top k", | |
interactive=True) | |
HISTORY_LEN = gr.Slider(0, | |
3, | |
value=0, | |
step=1, | |
label="history len", | |
interactive=True) | |
temperature = gr.Slider(0, | |
1, | |
value=0.01, | |
step=0.01, | |
label="temperature", | |
interactive=True) | |
top_p = gr.Slider(0, | |
1, | |
value=0.9, | |
step=0.1, | |
label="top_p", | |
interactive=True) | |
with gr.Column(scale=4): | |
chatbot = gr.Chatbot(label='ChatLLM').style(height=600) | |
message = gr.Textbox(label='请输入问题') | |
state = gr.State() | |
with gr.Row(): | |
clear_history = gr.Button("🧹 清除历史对话") | |
send = gr.Button("🚀 发送") | |
send.click(predict, | |
inputs=[ | |
message, large_language_model, | |
embedding_model, file, VECTOR_SEARCH_TOP_K, | |
HISTORY_LEN, temperature, top_p, use_web,state | |
], | |
outputs=[message, chatbot, state]) | |
clear_history.click(fn=clear_session, | |
inputs=[], | |
outputs=[chatbot, state], | |
queue=False) | |
message.submit(predict, | |
inputs=[ | |
message, large_language_model, | |
embedding_model, file, | |
VECTOR_SEARCH_TOP_K, HISTORY_LEN, | |
temperature, top_p, use_web,state | |
], | |
outputs=[message, chatbot, state]) | |
gr.Markdown("""提醒:<br> | |
1. 使用时请先上传自己的知识文件,并且文件中不含某些特殊字符,否则将返回error. <br> | |
2. 有任何使用问题,请通过[问题交流区](https://huggingface.co/spaces/thomas-yanxin/LangChain-ChatLLM/discussions)或[Github Issue区](https://github.com/thomas-yanxin/LangChain-ChatGLM-Webui/issues)进行反馈. <br> | |
""") | |
demo.queue().launch(server_name='0.0.0.0', share=False) | |