File size: 6,208 Bytes
00710e8
88b9835
75f2ed4
632c209
ad85111
 
75f2ed4
 
 
 
 
 
 
a84e446
 
 
75f2ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00710e8
 
88b9835
1b4b422
 
21eda87
396f6f7
 
1b4b422
75f2ed4
 
88b9835
 
 
75f2ed4
3ef9484
75f2ed4
 
 
 
88b9835
75f2ed4
 
3ef9484
1435716
75f2ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b9835
 
 
ff73241
9edbc68
75f2ed4
424869b
 
ab16048
 
 
 
 
 
 
 
 
 
 
1eb8136
ab16048
 
 
 
 
 
 
 
1b4b422
 
ab16048
424869b
1b4b422
ab16048
 
 
1b4b422
 
 
ab16048
1b4b422
ab16048
de50edd
 
 
 
d7dfcb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import time
from PIL import Image
from tqdm import tqdm

import spaces
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
import gradio as gr

if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)

class VGG_19(nn.Module):
    def __init__(self):
        super(VGG_19, self).__init__()
        self.model = models.vgg19(pretrained=True).features[:30]
        
        for i, _ in enumerate(self.model):
            if i in [4, 9, 18, 27]:
                self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
                
    def forward(self, x):
        features = []
        
        for i, layer in enumerate(self.model):
            x = layer(x)
            if i in [0, 5, 10, 19, 28]:
                features.append(x)
        return features
    
model = VGG_19().to(device)
for param in model.parameters():
    param.requires_grad = False

def load_img(img: Image, img_size):
    original_size = img.size
    
    transform = transforms.Compose([
        transforms.Resize((img_size, img_size)),
        transforms.ToTensor()
    ])
    img = transform(img).unsqueeze(0)
    return img, original_size

def load_img_from_path(path_to_image, img_size):
    img = Image.open(path_to_image)
    original_size = img.size
    
    transform = transforms.Compose([
        transforms.Resize((img_size, img_size)),
        transforms.ToTensor()
    ])
    img = transform(img).unsqueeze(0)
    return img, original_size

def save_img(img, original_size):
    img = img.cpu().clone()
    img = img.squeeze(0)
    
    # address tensor value scaling and quantization
    img = torch.clamp(img, 0, 1)
    img = img.mul(255).byte()
    
    unloader = transforms.ToPILImage()
    img = unloader(img)
    
    img = img.resize(original_size, Image.Resampling.LANCZOS)
    
    return img


style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}

@spaces.GPU(duration=30)
def inference(content_image, style_image, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
    yield None
    print('-'*15)
    print('STYLE:', style_image)
    img_size = 1024 if output_quality else 512
    content_img, original_size = load_img(content_image, img_size)
    content_img = content_img.to(device)
    style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
    
    print('CONTENT IMG SIZE:', original_size)

    iters = style_strength
    lr = 1e-1
    alpha = 1
    beta = 1

    st = time.time()
    generated_img = content_img.clone().requires_grad_(True)
    optimizer = optim.Adam([generated_img], lr=lr)
    
    for _ in tqdm(range(iters), desc='The magic is happening ✨'):
        generated_features = model(generated_img)
        content_features = model(content_img)
        style_features = model(style_img)
        
        content_loss = 0
        style_loss = 0
        
        for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
            batch_size, n_feature_maps, height, width = generated_feature.size()
            
            content_loss += (torch.mean((generated_feature - content_feature) ** 2))
            
            G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
            A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
            
            E_l = ((G - A) ** 2)
            w_l = 1/5
            style_loss += torch.mean(w_l * E_l)
            
        total_loss = alpha * content_loss + beta * style_loss
        optimizer.zero_grad()
        total_loss.backward()
        optimizer.step()
    
    et = time.time()
    print('TIME TAKEN:', et-st)
    yield save_img(generated_img, original_size)


def set_slider(value):
    return gr.update(value=value)

css = """
#container {
    margin: 0 auto;
    max-width: 550px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
    with gr.Column(elem_id='container'):
        content_and_output = gr.Image(show_label=False, type='pil', sources=['upload'], format='jpg')
        style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Choose a style', value='Starry Night', type='value')
        with gr.Accordion('Adjustments', open=False):
            with gr.Group():
                style_strength_slider = gr.Slider(label='Style Strength', minimum=0, maximum=100, step=5, value=50)
                with gr.Row():
                    low_button = gr.Button('Low').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
                    medium_button = gr.Button('Medium').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
                    high_button = gr.Button('High').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
            with gr.Group():
                output_quality = gr.Checkbox(label='High Quality', info='Note: This takes longer, but improves output image quality')
        submit_button = gr.Button('Submit')
    
        submit_button.click(fn=inference, inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality], outputs=[content_and_output])
        
        examples = gr.Examples(
            examples=[
                ['./content_images/TajMahal.jpg', 'Starry Night', 75, False],
                ['./content_images/GoldenRetriever.jpg', 'Lego Bricks', 50, False],
                ['./content_images/SeaTurtle.jpg', 'Mosaic', 100, False]
            ],
            inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality]
        )

# disable queue
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=True, allowed_paths=['/tmp/gradio/'])