File size: 4,871 Bytes
00710e8
88b9835
67d69a3
632c209
ad85111
 
75f2ed4
 
 
 
67d69a3
 
 
a84e446
 
 
75f2ed4
 
 
 
 
 
 
00710e8
 
88b9835
67d69a3
caf9141
21eda87
396f6f7
67d69a3
396f6f7
caf9141
75f2ed4
 
88b9835
 
 
67d69a3
f5c8b45
75f2ed4
f5c8b45
 
 
75f2ed4
 
 
88b9835
75f2ed4
 
3ef9484
f5c8b45
75f2ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b9835
 
 
ff73241
9edbc68
75f2ed4
424869b
 
ab16048
 
 
 
 
 
 
 
 
 
 
1eb8136
f5c8b45
ab16048
 
01dd5e7
ab16048
 
 
 
caf9141
f5c8b45
ab16048
424869b
caf9141
ab16048
 
 
caf9141
 
 
ab16048
caf9141
ab16048
de50edd
 
 
 
d7dfcb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import time
import datetime
from tqdm import tqdm

import spaces
import torch
import torch.optim as optim
import gradio as gr

from utils import load_img, load_img_from_path, save_img
from vgg19 import VGG_19

if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)

model = VGG_19().to(device)
for param in model.parameters():
    param.requires_grad = False


style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}

@spaces.GPU(duration=35)
def inference(content_image, style_image, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
    yield None
    print('-'*15)
    print('DATETIME:', datetime.datetime.now())
    print('STYLE:', style_image)
    img_size = 1024 if output_quality else 512
    content_img, original_size = load_img(content_image, img_size)
    content_img = content_img.to(device)
    style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
    
    print('CONTENT IMG SIZE:', original_size)
    print('STYLE STRENGTH:', style_strength)
    print('HIGH QUALITY:', output_quality)

    iters = 50
    # learning rate determined by input
    lr = 0.001 + (0.099 / 99) * (style_strength - 1)
    alpha = 1
    beta = 1

    st = time.time()
    generated_img = content_img.clone().requires_grad_(True)
    optimizer = optim.Adam([generated_img], lr=lr)
    
    for iter in tqdm(range(iters), desc='The magic is happening ✨'):
        generated_features = model(generated_img)
        content_features = model(content_img)
        style_features = model(style_img)
        
        content_loss = 0
        style_loss = 0
        
        for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
            batch_size, n_feature_maps, height, width = generated_feature.size()
            
            content_loss += (torch.mean((generated_feature - content_feature) ** 2))
            
            G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
            A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
            
            E_l = ((G - A) ** 2)
            w_l = 1/5
            style_loss += torch.mean(w_l * E_l)
            
        total_loss = alpha * content_loss + beta * style_loss
        optimizer.zero_grad()
        total_loss.backward()
        optimizer.step()
    
    et = time.time()
    print('TIME TAKEN:', et-st)
    yield save_img(generated_img, original_size)


def set_slider(value):
    return gr.update(value=value)

css = """
#container {
    margin: 0 auto;
    max-width: 550px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
    with gr.Column(elem_id='container'):
        content_and_output = gr.Image(show_label=False, type='pil', sources=['upload'], format='jpg')
        style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
        with gr.Accordion('Adjustments', open=False):
            with gr.Group():
                style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=100, step=1, value=50)
                with gr.Row():
                    low_button = gr.Button('Low').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
                    medium_button = gr.Button('Medium').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
                    high_button = gr.Button('High').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
            with gr.Group():
                output_quality = gr.Checkbox(label='More Realistic', info='Note: This takes longer, but improves output image quality')
        submit_button = gr.Button('Submit')
    
        submit_button.click(fn=inference, inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality], outputs=[content_and_output])
        
        examples = gr.Examples(
            examples=[
                ['./content_images/TajMahal.jpg', 'Starry Night', 75, True],
                ['./content_images/GoldenRetriever.jpg', 'Lego Bricks', 50, True],
                ['./content_images/SeaTurtle.jpg', 'Mosaic', 100, True]
            ],
            inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality]
        )

# disable queue
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=True, allowed_paths=['/tmp/gradio/'])