Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
import torchvision.models as models | |
class VGG_19(nn.Module): | |
def __init__(self): | |
super(VGG_19, self).__init__() | |
self.model = models.vgg19(weights='DEFAULT').features[:30] | |
for i, _ in enumerate(self.model): | |
if i in [4, 9, 18, 27]: | |
self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | |
def forward(self, x): | |
features = [] | |
for i, layer in enumerate(self.model): | |
x = layer(x) | |
if i in [0, 5, 10, 19, 28]: | |
features.append(x) | |
return features | |
if __name__ == '__main__': | |
model = VGG_19() | |
print(model) |