jamino30 commited on
Commit
1527fdb
1 Parent(s): f303d12

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. app.py +11 -13
  2. requirements.txt +0 -1
app.py CHANGED
@@ -10,7 +10,6 @@ import torch.amp as amp
10
  import torchvision.transforms as transforms
11
  import torchvision.models as models
12
  import gradio as gr
13
- from gradio_imageslider import ImageSlider
14
 
15
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
16
  print('DEVICE:', device)
@@ -103,7 +102,7 @@ def inference(content_image, style_image, style_strength, progress=gr.Progress(t
103
  generated_img = content_img.clone().requires_grad_(True)
104
  optimizer = optim.Adam([generated_img], lr=lr)
105
 
106
- for iter in tqdm(range(iters)):
107
  generated_features = model(generated_img)
108
  content_features = model(content_img)
109
  style_features = model(style_img)
@@ -112,7 +111,6 @@ def inference(content_image, style_image, style_strength, progress=gr.Progress(t
112
  style_loss = 0
113
 
114
  for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
115
-
116
  batch_size, n_feature_maps, height, width = generated_feature.size()
117
 
118
  content_loss += (torch.mean((generated_feature - content_feature) ** 2))
@@ -136,15 +134,15 @@ def inference(content_image, style_image, style_strength, progress=gr.Progress(t
136
 
137
  examples = [
138
  # page 1
139
- ['./content_images/TajMahal.jpg', 'Starry Night'],
140
- ['./content_images/GoldenRetriever.jpg', 'Lego Bricks'],
141
- ['./content_images/Beach.jpg', 'Oil Painting'],
142
- ['./content_images/StandingOnCliff.png', 'Great Wave'],
143
  # page 2
144
- ['./content_images/Surfer.jpg', 'Starry Night'],
145
- ['./content_images/CameraGirl.jpg', 'Lego Bricks'],
146
- ['./content_images/NYCSkyline.jpg', 'Oil Painting'],
147
- ['./content_images/GoldenRetriever.jpg', 'Great Wave'],
148
  ]
149
 
150
  with gr.Blocks(title='🖼️ Neural Style Transfer') as demo:
@@ -154,10 +152,10 @@ with gr.Blocks(title='🖼️ Neural Style Transfer') as demo:
154
  content_image = gr.Image(label='Content', type='pil', sources=['upload'])
155
  style_dropdown = gr.Dropdown(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
156
  with gr.Accordion('Advanced Settings', open=False):
157
- style_strength = gr.Slider(label='Style Strength', minimum=1, maximum=200, step=1, value=100)
158
  submit_button = gr.Button('Submit')
159
  with gr.Column():
160
- output_image = ImageSlider(position=0.25, label='Output', show_download_button=True, interactive=False)
161
 
162
  submit_button.click(fn=inference, inputs=[content_image, style_dropdown, style_strength], outputs=[output_image])
163
 
 
10
  import torchvision.transforms as transforms
11
  import torchvision.models as models
12
  import gradio as gr
 
13
 
14
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
15
  print('DEVICE:', device)
 
102
  generated_img = content_img.clone().requires_grad_(True)
103
  optimizer = optim.Adam([generated_img], lr=lr)
104
 
105
+ for _ in tqdm(range(iters), desc=''):
106
  generated_features = model(generated_img)
107
  content_features = model(content_img)
108
  style_features = model(style_img)
 
111
  style_loss = 0
112
 
113
  for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
 
114
  batch_size, n_feature_maps, height, width = generated_feature.size()
115
 
116
  content_loss += (torch.mean((generated_feature - content_feature) ** 2))
 
134
 
135
  examples = [
136
  # page 1
137
+ ['./content_images/TajMahal.jpg', 'Starry Night', 75],
138
+ ['./content_images/GoldenRetriever.jpg', 'Lego Bricks', 50],
139
+ ['./content_images/Beach.jpg', 'Oil Painting', 50],
140
+ ['./content_images/StandingOnCliff.png', 'Great Wave', 75],
141
  # page 2
142
+ ['./content_images/Surfer.jpg', 'Starry Night', 75],
143
+ ['./content_images/CameraGirl.jpg', 'Lego Bricks', 50],
144
+ ['./content_images/NYCSkyline.jpg', 'Oil Painting', 50],
145
+ ['./content_images/GoldenRetriever.jpg', 'Great Wave', 75],
146
  ]
147
 
148
  with gr.Blocks(title='🖼️ Neural Style Transfer') as demo:
 
152
  content_image = gr.Image(label='Content', type='pil', sources=['upload'])
153
  style_dropdown = gr.Dropdown(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
154
  with gr.Accordion('Advanced Settings', open=False):
155
+ style_strength = gr.Slider(label='Style Strength', minimum=0, maximum=100, step=5, value=50)
156
  submit_button = gr.Button('Submit')
157
  with gr.Column():
158
+ output_image = gr.Image(label='Output', show_download_button=True, interactive=False)
159
 
160
  submit_button.click(fn=inference, inputs=[content_image, style_dropdown, style_strength], outputs=[output_image])
161
 
requirements.txt CHANGED
@@ -3,6 +3,5 @@ torch
3
  torchvision
4
  pillow
5
  gradio
6
- gradio_imageslider
7
  spaces
8
  tqdm
 
3
  torchvision
4
  pillow
5
  gradio
 
6
  spaces
7
  tqdm