Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ import torch
|
|
8 |
import torch.optim as optim
|
9 |
import gradio as gr
|
10 |
|
11 |
-
from utils import
|
12 |
from vgg19 import VGG_19
|
13 |
|
14 |
if torch.cuda.is_available(): device = 'cuda'
|
@@ -31,15 +31,15 @@ def inference(content_image, style_image, style_strength, output_quality, progre
|
|
31 |
print('DATETIME:', datetime.datetime.now())
|
32 |
print('STYLE:', style_image)
|
33 |
img_size = 1024 if output_quality else 512
|
34 |
-
content_img, original_size =
|
35 |
content_img = content_img.to(device)
|
36 |
-
style_img =
|
37 |
|
38 |
print('CONTENT IMG SIZE:', original_size)
|
39 |
print('STYLE STRENGTH:', style_strength)
|
40 |
print('HIGH QUALITY:', output_quality)
|
41 |
|
42 |
-
iters =
|
43 |
# learning rate determined by input
|
44 |
lr = 0.001 + (0.099 / 99) * (style_strength - 1)
|
45 |
alpha = 1
|
@@ -49,7 +49,7 @@ def inference(content_image, style_image, style_strength, output_quality, progre
|
|
49 |
generated_img = content_img.clone().requires_grad_(True)
|
50 |
optimizer = optim.Adam([generated_img], lr=lr)
|
51 |
|
52 |
-
for
|
53 |
generated_features = model(generated_img)
|
54 |
content_features = model(content_img)
|
55 |
style_features = model(style_img)
|
@@ -76,7 +76,7 @@ def inference(content_image, style_image, style_strength, output_quality, progre
|
|
76 |
|
77 |
et = time.time()
|
78 |
print('TIME TAKEN:', et-st)
|
79 |
-
yield
|
80 |
|
81 |
|
82 |
def set_slider(value):
|
@@ -92,7 +92,7 @@ css = """
|
|
92 |
with gr.Blocks(css=css) as demo:
|
93 |
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
|
94 |
with gr.Column(elem_id='container'):
|
95 |
-
content_and_output = gr.Image(show_label=False, type='pil', sources=['upload'], format='jpg')
|
96 |
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
|
97 |
with gr.Accordion('Adjustments', open=False):
|
98 |
with gr.Group():
|
@@ -103,9 +103,34 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
high_button = gr.Button('High').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
|
104 |
with gr.Group():
|
105 |
output_quality = gr.Checkbox(label='More Realistic', info='Note: If unchecked, the resulting image will have a more artistic flair.', value=True)
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
submit_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
examples = gr.Examples(
|
111 |
examples=[
|
|
|
8 |
import torch.optim as optim
|
9 |
import gradio as gr
|
10 |
|
11 |
+
from utils import preprocess_img, preprocess_img_from_path, postprocess_img
|
12 |
from vgg19 import VGG_19
|
13 |
|
14 |
if torch.cuda.is_available(): device = 'cuda'
|
|
|
31 |
print('DATETIME:', datetime.datetime.now())
|
32 |
print('STYLE:', style_image)
|
33 |
img_size = 1024 if output_quality else 512
|
34 |
+
content_img, original_size = preprocess_img(content_image, img_size)
|
35 |
content_img = content_img.to(device)
|
36 |
+
style_img = preprocess_img_from_path(style_options[style_image], img_size)[0].to(device)
|
37 |
|
38 |
print('CONTENT IMG SIZE:', original_size)
|
39 |
print('STYLE STRENGTH:', style_strength)
|
40 |
print('HIGH QUALITY:', output_quality)
|
41 |
|
42 |
+
iters = 1
|
43 |
# learning rate determined by input
|
44 |
lr = 0.001 + (0.099 / 99) * (style_strength - 1)
|
45 |
alpha = 1
|
|
|
49 |
generated_img = content_img.clone().requires_grad_(True)
|
50 |
optimizer = optim.Adam([generated_img], lr=lr)
|
51 |
|
52 |
+
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
|
53 |
generated_features = model(generated_img)
|
54 |
content_features = model(content_img)
|
55 |
style_features = model(style_img)
|
|
|
76 |
|
77 |
et = time.time()
|
78 |
print('TIME TAKEN:', et-st)
|
79 |
+
yield postprocess_img(generated_img, original_size)
|
80 |
|
81 |
|
82 |
def set_slider(value):
|
|
|
92 |
with gr.Blocks(css=css) as demo:
|
93 |
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
|
94 |
with gr.Column(elem_id='container'):
|
95 |
+
content_and_output = gr.Image(show_label=False, type='pil', sources=['upload'], format='jpg', show_download_button=False)
|
96 |
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
|
97 |
with gr.Accordion('Adjustments', open=False):
|
98 |
with gr.Group():
|
|
|
103 |
high_button = gr.Button('High').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
|
104 |
with gr.Group():
|
105 |
output_quality = gr.Checkbox(label='More Realistic', info='Note: If unchecked, the resulting image will have a more artistic flair.', value=True)
|
106 |
+
|
107 |
+
submit_button = gr.Button('Submit', variant='primary')
|
108 |
+
download_button = gr.DownloadButton(label='Download Image', visible=False)
|
109 |
+
|
110 |
+
def save_generated_image(img):
|
111 |
+
output_path = 'generated.jpg'
|
112 |
+
img.save(output_path)
|
113 |
+
return output_path
|
114 |
|
115 |
+
submit_button.click(
|
116 |
+
fn=inference,
|
117 |
+
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality],
|
118 |
+
outputs=[content_and_output]
|
119 |
+
).then(
|
120 |
+
fn=save_generated_image,
|
121 |
+
inputs=[content_and_output],
|
122 |
+
outputs=[download_button]
|
123 |
+
).then(
|
124 |
+
fn=lambda _: gr.update(visible=True),
|
125 |
+
inputs=[],
|
126 |
+
outputs=[download_button]
|
127 |
+
)
|
128 |
+
|
129 |
+
content_and_output.change(
|
130 |
+
fn=lambda _: gr.update(visible=False),
|
131 |
+
inputs=[content_and_output],
|
132 |
+
outputs=[download_button]
|
133 |
+
)
|
134 |
|
135 |
examples = gr.Examples(
|
136 |
examples=[
|
utils.py
CHANGED
@@ -3,7 +3,7 @@ from PIL import Image
|
|
3 |
import torch
|
4 |
import torchvision.transforms as transforms
|
5 |
|
6 |
-
def
|
7 |
original_size = img.size
|
8 |
|
9 |
transform = transforms.Compose([
|
@@ -13,7 +13,7 @@ def load_img(img: Image, img_size):
|
|
13 |
img = transform(img).unsqueeze(0)
|
14 |
return img, original_size
|
15 |
|
16 |
-
def
|
17 |
img = Image.open(path_to_image)
|
18 |
original_size = img.size
|
19 |
|
@@ -24,7 +24,7 @@ def load_img_from_path(path_to_image, img_size):
|
|
24 |
img = transform(img).unsqueeze(0)
|
25 |
return img, original_size
|
26 |
|
27 |
-
def
|
28 |
img = img.cpu().clone()
|
29 |
img = img.squeeze(0)
|
30 |
|
|
|
3 |
import torch
|
4 |
import torchvision.transforms as transforms
|
5 |
|
6 |
+
def preprocess_img(img: Image, img_size):
|
7 |
original_size = img.size
|
8 |
|
9 |
transform = transforms.Compose([
|
|
|
13 |
img = transform(img).unsqueeze(0)
|
14 |
return img, original_size
|
15 |
|
16 |
+
def preprocess_img_from_path(path_to_image, img_size):
|
17 |
img = Image.open(path_to_image)
|
18 |
original_size = img.size
|
19 |
|
|
|
24 |
img = transform(img).unsqueeze(0)
|
25 |
return img, original_size
|
26 |
|
27 |
+
def postprocess_img(img, original_size):
|
28 |
img = img.cpu().clone()
|
29 |
img = img.squeeze(0)
|
30 |
|