jamino30 commited on
Commit
67d69a3
·
verified ·
1 Parent(s): 6d82f14

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. app.py +8 -59
  2. style_images/Monet.jpg +0 -0
  3. utils.py +40 -0
  4. vgg19.py +20 -0
app.py CHANGED
@@ -1,87 +1,34 @@
1
  import os
2
  import time
3
- from PIL import Image
4
  from tqdm import tqdm
5
 
6
  import spaces
7
  import torch
8
- import torch.nn as nn
9
  import torch.optim as optim
10
- import torchvision.transforms as transforms
11
- import torchvision.models as models
12
  import gradio as gr
13
 
 
 
 
14
  if torch.cuda.is_available(): device = 'cuda'
15
  elif torch.backends.mps.is_available(): device = 'mps'
16
  else: device = 'cpu'
17
  print('DEVICE:', device)
18
 
19
- class VGG_19(nn.Module):
20
- def __init__(self):
21
- super(VGG_19, self).__init__()
22
- self.model = models.vgg19(pretrained=True).features[:30]
23
-
24
- for i, _ in enumerate(self.model):
25
- if i in [4, 9, 18, 27]:
26
- self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
27
-
28
- def forward(self, x):
29
- features = []
30
-
31
- for i, layer in enumerate(self.model):
32
- x = layer(x)
33
- if i in [0, 5, 10, 19, 28]:
34
- features.append(x)
35
- return features
36
-
37
  model = VGG_19().to(device)
38
  for param in model.parameters():
39
  param.requires_grad = False
40
 
41
- def load_img(img: Image, img_size):
42
- original_size = img.size
43
-
44
- transform = transforms.Compose([
45
- transforms.Resize((img_size, img_size)),
46
- transforms.ToTensor()
47
- ])
48
- img = transform(img).unsqueeze(0)
49
- return img, original_size
50
-
51
- def load_img_from_path(path_to_image, img_size):
52
- img = Image.open(path_to_image)
53
- original_size = img.size
54
-
55
- transform = transforms.Compose([
56
- transforms.Resize((img_size, img_size)),
57
- transforms.ToTensor()
58
- ])
59
- img = transform(img).unsqueeze(0)
60
- return img, original_size
61
-
62
- def save_img(img, original_size):
63
- img = img.cpu().clone()
64
- img = img.squeeze(0)
65
-
66
- # address tensor value scaling and quantization
67
- img = torch.clamp(img, 0, 1)
68
- img = img.mul(255).byte()
69
-
70
- unloader = transforms.ToPILImage()
71
- img = unloader(img)
72
-
73
- img = img.resize(original_size, Image.Resampling.LANCZOS)
74
-
75
- return img
76
-
77
 
78
  style_files = os.listdir('./style_images')
79
  style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
80
 
81
- @spaces.GPU(duration=30)
82
  def inference(content_image, style_image, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
83
  yield None
84
  print('-'*15)
 
85
  print('STYLE:', style_image)
86
  img_size = 1024 if output_quality else 512
87
  content_img, original_size = load_img(content_image, img_size)
@@ -89,6 +36,8 @@ def inference(content_image, style_image, style_strength, output_quality, progre
89
  style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
90
 
91
  print('CONTENT IMG SIZE:', original_size)
 
 
92
 
93
  iters = style_strength
94
  lr = 1e-1
 
1
  import os
2
  import time
3
+ import datetime
4
  from tqdm import tqdm
5
 
6
  import spaces
7
  import torch
 
8
  import torch.optim as optim
 
 
9
  import gradio as gr
10
 
11
+ from utils import load_img, load_img_from_path, save_img
12
+ from vgg19 import VGG_19
13
+
14
  if torch.cuda.is_available(): device = 'cuda'
15
  elif torch.backends.mps.is_available(): device = 'mps'
16
  else: device = 'cpu'
17
  print('DEVICE:', device)
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  model = VGG_19().to(device)
20
  for param in model.parameters():
21
  param.requires_grad = False
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  style_files = os.listdir('./style_images')
25
  style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
26
 
27
+ @spaces.GPU(duration=35)
28
  def inference(content_image, style_image, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
29
  yield None
30
  print('-'*15)
31
+ print('DATETIME:', datetime.datetime.now())
32
  print('STYLE:', style_image)
33
  img_size = 1024 if output_quality else 512
34
  content_img, original_size = load_img(content_image, img_size)
 
36
  style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
37
 
38
  print('CONTENT IMG SIZE:', original_size)
39
+ print('STYLE STRENGTH:', style_strength)
40
+ print('HIGH QUALITY:', output_quality)
41
 
42
  iters = style_strength
43
  lr = 1e-1
style_images/Monet.jpg ADDED
utils.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+
3
+ import torch
4
+ import torchvision.transforms as transforms
5
+
6
+ def load_img(img: Image, img_size):
7
+ original_size = img.size
8
+
9
+ transform = transforms.Compose([
10
+ transforms.Resize((img_size, img_size)),
11
+ transforms.ToTensor()
12
+ ])
13
+ img = transform(img).unsqueeze(0)
14
+ return img, original_size
15
+
16
+ def load_img_from_path(path_to_image, img_size):
17
+ img = Image.open(path_to_image)
18
+ original_size = img.size
19
+
20
+ transform = transforms.Compose([
21
+ transforms.Resize((img_size, img_size)),
22
+ transforms.ToTensor()
23
+ ])
24
+ img = transform(img).unsqueeze(0)
25
+ return img, original_size
26
+
27
+ def save_img(img, original_size):
28
+ img = img.cpu().clone()
29
+ img = img.squeeze(0)
30
+
31
+ # address tensor value scaling and quantization
32
+ img = torch.clamp(img, 0, 1)
33
+ img = img.mul(255).byte()
34
+
35
+ unloader = transforms.ToPILImage()
36
+ img = unloader(img)
37
+
38
+ img = img.resize(original_size, Image.Resampling.LANCZOS)
39
+
40
+ return img
vgg19.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torchvision.models as models
3
+
4
+ class VGG_19(nn.Module):
5
+ def __init__(self):
6
+ super(VGG_19, self).__init__()
7
+ self.model = models.vgg19(pretrained=True).features[:30]
8
+
9
+ for i, _ in enumerate(self.model):
10
+ if i in [4, 9, 18, 27]:
11
+ self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
12
+
13
+ def forward(self, x):
14
+ features = []
15
+
16
+ for i, layer in enumerate(self.model):
17
+ x = layer(x)
18
+ if i in [0, 5, 10, 19, 28]:
19
+ features.append(x)
20
+ return features