jamino30 commited on
Commit
91d9343
1 Parent(s): 1a46028

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. app.py +15 -47
  2. inference.py +48 -0
  3. vgg16.py +1 -1
  4. vgg19.py +1 -1
app.py CHANGED
@@ -1,16 +1,14 @@
1
  import os
2
  import time
3
  from datetime import datetime, timezone, timedelta
4
- from tqdm import tqdm
5
 
6
  import spaces
7
  import torch
8
- import torch.optim as optim
9
- import torch.nn.functional as F
10
  import gradio as gr
11
 
12
  from utils import preprocess_img, preprocess_img_from_path, postprocess_img
13
  from vgg19 import VGG_19
 
14
 
15
  if torch.cuda.is_available(): device = 'cuda'
16
  elif torch.backends.mps.is_available(): device = 'mps'
@@ -42,63 +40,33 @@ for style_name, style_img_path in style_options.items():
42
  style_features = (model(style_img_512), model(style_img_1024))
43
  cached_style_features[style_name] = style_features
44
 
45
- def gram_matrix(feature):
46
- batch_size, n_feature_maps, height, width = feature.size()
47
- new_feature = feature.view(batch_size * n_feature_maps, height * width)
48
- return torch.mm(new_feature, new_feature.t())
49
-
50
- def compute_loss(generated_features, content_features, style_features, alpha, beta):
51
- content_loss = 0
52
- style_loss = 0
53
- w_l = 1 / len(generated_features)
54
- for gf, cf, sf in zip(generated_features, content_features, style_features):
55
- content_loss += F.mse_loss(gf, cf)
56
- G = gram_matrix(gf)
57
- A = gram_matrix(sf)
58
- style_loss += w_l * F.mse_loss(G, A)
59
- return alpha * content_loss + beta * style_loss
60
-
61
  @spaces.GPU(duration=6)
62
- def inference(content_image, style_name, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
63
- yield None
64
- print('-'*15)
65
- print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4))
66
- print('STYLE:', style_name)
67
-
68
  img_size = 1024 if output_quality else 512
69
  content_img, original_size = preprocess_img(content_image, img_size)
70
  content_img = content_img.to(device)
71
 
 
 
 
72
  print('CONTENT IMG SIZE:', original_size)
73
  print('STYLE STRENGTH:', style_strength)
74
  print('HIGH QUALITY:', output_quality)
75
 
76
- iters = 35
77
- lr = 0.001 + (0.099 / 99) * (style_strength - 1) # [0.001, 0.1]
78
- alpha = 1
79
- beta = 1
80
-
81
- st = time.time()
82
- generated_img = content_img.clone().requires_grad_(True)
83
- optimizer = optim.AdamW([generated_img], lr=lr)
84
-
85
- with torch.no_grad():
86
- content_features = model(content_img)
87
  style_features = cached_style_features[style_name][0 if img_size == 512 else 1]
 
88
 
89
- for _ in tqdm(range(iters), desc='The magic is happening ✨'):
90
- optimizer.zero_grad()
91
-
92
- generated_features = model(generated_img)
93
- total_loss = compute_loss(generated_features, content_features, style_features, alpha, beta)
94
-
95
- total_loss.backward()
96
- optimizer.step()
97
-
98
  et = time.time()
99
  print('TIME TAKEN:', et-st)
100
 
101
- yield postprocess_img(generated_img, original_size)
102
 
103
 
104
  def set_slider(value):
@@ -139,7 +107,7 @@ with gr.Blocks(css=css) as demo:
139
  return filename
140
 
141
  submit_button.click(
142
- fn=inference,
143
  inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality],
144
  outputs=[content_and_output]
145
  ).then(
 
1
  import os
2
  import time
3
  from datetime import datetime, timezone, timedelta
 
4
 
5
  import spaces
6
  import torch
 
 
7
  import gradio as gr
8
 
9
  from utils import preprocess_img, preprocess_img_from_path, postprocess_img
10
  from vgg19 import VGG_19
11
+ from inference import inference
12
 
13
  if torch.cuda.is_available(): device = 'cuda'
14
  elif torch.backends.mps.is_available(): device = 'mps'
 
40
  style_features = (model(style_img_512), model(style_img_1024))
41
  cached_style_features[style_name] = style_features
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  @spaces.GPU(duration=6)
44
+ def run(content_image, style_name, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
 
 
 
 
 
45
  img_size = 1024 if output_quality else 512
46
  content_img, original_size = preprocess_img(content_image, img_size)
47
  content_img = content_img.to(device)
48
 
49
+ print('-'*15)
50
+ print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4)) # est
51
+ print('STYLE:', style_name)
52
  print('CONTENT IMG SIZE:', original_size)
53
  print('STYLE STRENGTH:', style_strength)
54
  print('HIGH QUALITY:', output_quality)
55
 
 
 
 
 
 
 
 
 
 
 
 
56
  style_features = cached_style_features[style_name][0 if img_size == 512 else 1]
57
+ converted_lr = 0.001 + (0.099 / 99) * (style_strength - 1)
58
 
59
+ st = time.time()
60
+ generated_img = inference(
61
+ model=model,
62
+ content_image=content_img,
63
+ style_features=style_features,
64
+ lr=converted_lr
65
+ )
 
 
66
  et = time.time()
67
  print('TIME TAKEN:', et-st)
68
 
69
+ return postprocess_img(generated_img, original_size)
70
 
71
 
72
  def set_slider(value):
 
107
  return filename
108
 
109
  submit_button.click(
110
+ fn=run,
111
  inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality],
112
  outputs=[content_and_output]
113
  ).then(
inference.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tqdm import tqdm
2
+
3
+ import torch
4
+ import torch.optim as optim
5
+ import torch.nn.functional as F
6
+
7
+ def _gram_matrix(feature):
8
+ batch_size, n_feature_maps, height, width = feature.size()
9
+ new_feature = feature.view(batch_size * n_feature_maps, height * width)
10
+ return torch.mm(new_feature, new_feature.t())
11
+
12
+ def _compute_loss(generated_features, content_features, style_features, alpha, beta):
13
+ content_loss = 0
14
+ style_loss = 0
15
+ w_l = 1 / len(generated_features)
16
+ for gf, cf, sf in zip(generated_features, content_features, style_features):
17
+ content_loss += F.mse_loss(gf, cf)
18
+ G = _gram_matrix(gf)
19
+ A = _gram_matrix(sf)
20
+ style_loss += w_l * F.mse_loss(G, A)
21
+ return alpha * content_loss + beta * style_loss
22
+
23
+ def inference(
24
+ *,
25
+ model,
26
+ content_image,
27
+ style_features,
28
+ lr,
29
+ iterations=35,
30
+ alpha=1,
31
+ beta=1
32
+ ):
33
+ geenrated_image = content_image.clone().requires_grad_(True)
34
+ optimizer = optim.AdamW([geenrated_image], lr=lr)
35
+
36
+ with torch.no_grad():
37
+ content_features = model(content_image)
38
+
39
+ for _ in tqdm(range(iterations), desc='The magic is happening ✨'):
40
+ optimizer.zero_grad()
41
+
42
+ generated_features = model(geenrated_image)
43
+ total_loss = _compute_loss(generated_features, content_features, style_features, alpha, beta)
44
+
45
+ total_loss.backward()
46
+ optimizer.step()
47
+
48
+ return geenrated_image
vgg16.py CHANGED
@@ -52,7 +52,7 @@ VGG(
52
  class VGG_16(nn.Module):
53
  def __init__(self):
54
  super(VGG_16, self).__init__()
55
- self.model = models.vgg16(weights=models.VGG16_Weights).features[:30]
56
 
57
  for i, _ in enumerate(self.model):
58
  if i in [4, 9, 16, 23]:
 
52
  class VGG_16(nn.Module):
53
  def __init__(self):
54
  super(VGG_16, self).__init__()
55
+ self.model = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).features[:30]
56
 
57
  for i, _ in enumerate(self.model):
58
  if i in [4, 9, 16, 23]:
vgg19.py CHANGED
@@ -58,7 +58,7 @@ VGG(
58
  class VGG_19(nn.Module):
59
  def __init__(self):
60
  super(VGG_19, self).__init__()
61
- self.model = models.vgg19(weights=models.VGG19_Weights).features[:30]
62
 
63
  for i, _ in enumerate(self.model):
64
  if i in [4, 9, 18, 27]:
 
58
  class VGG_19(nn.Module):
59
  def __init__(self):
60
  super(VGG_19, self).__init__()
61
+ self.model = models.vgg19(weights=models.VGG19_Weights.IMAGENET1K_V1).features[:30]
62
 
63
  for i, _ in enumerate(self.model):
64
  if i in [4, 9, 18, 27]: