Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- app.py +5 -0
- inference.py +2 -5
app.py
CHANGED
@@ -4,6 +4,7 @@ from datetime import datetime, timezone, timedelta
|
|
4 |
|
5 |
import spaces
|
6 |
import torch
|
|
|
7 |
import numpy as np
|
8 |
import gradio as gr
|
9 |
from gradio_imageslider import ImageSlider
|
@@ -21,6 +22,9 @@ if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name())
|
|
21 |
model = VGG_19().to(device).eval()
|
22 |
for param in model.parameters():
|
23 |
param.requires_grad = False
|
|
|
|
|
|
|
24 |
|
25 |
style_files = os.listdir('./style_images')
|
26 |
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
|
@@ -51,6 +55,7 @@ def run(content_image, style_name, style_strength=5, apply_to_background=False,
|
|
51 |
st = time.time()
|
52 |
generated_img = inference(
|
53 |
model=model,
|
|
|
54 |
content_image=content_img,
|
55 |
style_features=style_features,
|
56 |
lr=lrs[style_strength-1],
|
|
|
4 |
|
5 |
import spaces
|
6 |
import torch
|
7 |
+
import torchvision.models as models
|
8 |
import numpy as np
|
9 |
import gradio as gr
|
10 |
from gradio_imageslider import ImageSlider
|
|
|
22 |
model = VGG_19().to(device).eval()
|
23 |
for param in model.parameters():
|
24 |
param.requires_grad = False
|
25 |
+
segmentation_model = models.segmentation.deeplabv3_resnet101(
|
26 |
+
weights='DEFAULT'
|
27 |
+
).to(device).eval()
|
28 |
|
29 |
style_files = os.listdir('./style_images')
|
30 |
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
|
|
|
55 |
st = time.time()
|
56 |
generated_img = inference(
|
57 |
model=model,
|
58 |
+
segmentation_model=segmentation_model,
|
59 |
content_image=content_img,
|
60 |
style_features=style_features,
|
61 |
lr=lrs[style_strength-1],
|
inference.py
CHANGED
@@ -28,7 +28,6 @@ def _compute_loss(generated_features, content_features, style_features, resized_
|
|
28 |
else:
|
29 |
G = _gram_matrix(gf)
|
30 |
A = _gram_matrix(sf)
|
31 |
-
style_loss += w_l * F.mse_loss(G, A)
|
32 |
style_loss += w_l * F.mse_loss(G, A)
|
33 |
|
34 |
return alpha * content_loss + beta * style_loss
|
@@ -36,6 +35,7 @@ def _compute_loss(generated_features, content_features, style_features, resized_
|
|
36 |
def inference(
|
37 |
*,
|
38 |
model,
|
|
|
39 |
content_image,
|
40 |
style_features,
|
41 |
apply_to_background,
|
@@ -53,10 +53,7 @@ def inference(
|
|
53 |
content_features = model(content_image)
|
54 |
|
55 |
resized_bg_masks = []
|
56 |
-
if apply_to_background:
|
57 |
-
segmentation_model = models.segmentation.deeplabv3_resnet101(weights='DEFAULT').eval()
|
58 |
-
segmentation_model = segmentation_model.to(content_image.device)
|
59 |
-
|
60 |
segmentation_output = segmentation_model(content_image)['out']
|
61 |
segmentation_mask = segmentation_output.argmax(dim=1)
|
62 |
|
|
|
28 |
else:
|
29 |
G = _gram_matrix(gf)
|
30 |
A = _gram_matrix(sf)
|
|
|
31 |
style_loss += w_l * F.mse_loss(G, A)
|
32 |
|
33 |
return alpha * content_loss + beta * style_loss
|
|
|
35 |
def inference(
|
36 |
*,
|
37 |
model,
|
38 |
+
segmentation_model,
|
39 |
content_image,
|
40 |
style_features,
|
41 |
apply_to_background,
|
|
|
53 |
content_features = model(content_image)
|
54 |
|
55 |
resized_bg_masks = []
|
56 |
+
if apply_to_background:
|
|
|
|
|
|
|
57 |
segmentation_output = segmentation_model(content_image)['out']
|
58 |
segmentation_mask = segmentation_output.argmax(dim=1)
|
59 |
|