import os from functools import partial import gradio as gr import pandas as pd import utils import vector_db from utils import get_image_embedding, \ get_image_path, model_names, download_images, generate_and_save_embeddings, get_metadata_path, url_to_image NUM_OUTPUTS = 4 def search(input_img, model_name): query_embedding = get_image_embedding(model_name, input_img).tolist() top_results = vector_db.query_embeddings_db(query_embedding=query_embedding, dataset_name=utils.cur_dataset, model_name=model_name) print (top_results) return [utils.url_to_image(hit['metadata']['mainphotourl']) for hit in top_results['matches']] def read_tsv_temporary_file(temp_file_wrapper): dataset_name = os.path.splitext(os.path.basename(temp_file_wrapper.name))[0] utils.set_cur_dataset(dataset_name) df = pd.read_csv(temp_file_wrapper.name, sep='\t') # Read the TSV content into a pandas DataFrame df.to_csv(os.path.join(get_metadata_path(), dataset_name + '.tsv'), sep='\t', index=False) print('start downloading') download_images(df, get_image_path()) generate_and_save_embeddings() utils.refresh_all_datasets() utils.set_cur_dataset(dataset_name) return gr.update(choices=utils.all_datasets, value=dataset_name) def update_dataset_dropdown(): utils.refresh_all_datasets() utils.set_cur_dataset(utils.all_datasets[0]) return gr.update(choices=utils.all_datasets, value=utils.cur_dataset) def gen_image_blocks(num_outputs): with gr.Row(): row = [gr.outputs.Image(label=model_name, type='filepath') for i in range(int(num_outputs))] return row with gr.Blocks() as demo: galleries = dict() with gr.Row(): with gr.Column(scale=1): file_upload = gr.File(label="Upload TSV File", file_types=[".tsv"]) image_input = gr.inputs.Image(type="pil", label="Input Image") dataset_dropdown = gr.Dropdown(label='Datasets', choices=utils.all_datasets) b1 = gr.Button("Find Similar Images") b2 = gr.Button("Refresh Datasets") dataset_dropdown.select(utils.set_cur_dataset, inputs=dataset_dropdown) file_upload.upload(read_tsv_temporary_file, inputs=file_upload, outputs=dataset_dropdown) b2.click(update_dataset_dropdown, outputs=dataset_dropdown) with gr.Column(scale=3): for model_name in model_names: galleries[model_name] = gen_image_blocks(NUM_OUTPUTS) for model_name in model_names: b1.click(partial(search, model_name=model_name), inputs=[image_input], outputs=galleries[model_name]) b2.click(utils.refresh_all_datasets, outputs=dataset_dropdown) demo.launch()