File size: 12,645 Bytes
ca9ce93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import re
import collections
from typing import Dict, List, Tuple, Set
from tqdm import tqdm
from functools import lru_cache

class HindiBPE:
    def __init__(self, max_vocab_size: int = 5000, target_compression: float = 3.2):
        self.max_vocab_size = max_vocab_size
        self.target_compression = target_compression
        self.vocab = {"<PAD>": 0, "<UNK>": 1, "<BOS>": 2, "<EOS>": 3}
        self.inverse_vocab = {v: k for k, v in self.vocab.items()}
        self.bpe_ranks = {}
        self.cache = {}
        self.special_tokens = {"<PAD>", "<UNK>", "<BOS>", "<EOS>"}
        self.word_end_token = "▁"  # Special token to mark word boundaries
        self.vocab[self.word_end_token] = len(self.vocab)
        self.inverse_vocab[self.vocab[self.word_end_token]] = self.word_end_token

    def _tokenize_word(self, word: str) -> List[str]:
        """Tokenize a word into characters, handling Hindi characters properly"""
        if word in self.cache:
            return self.cache[word]
        
        # First check if the whole word is in vocabulary
        if word in self.vocab:
            self.cache[word] = [word]
            return [word]
        
        # Split into individual characters while preserving character combinations
        tokens = []
        i = 0
        while i < len(word):
            # Check for Hindi character followed by combining marks
            if re.match(r'[\u0900-\u097F]', word[i]):
                token = word[i]
                i += 1
                # Add combining marks to the token
                while i < len(word) and re.match(r'[\u0900-\u0903\u093A-\u094F\u0962-\u0963]', word[i]):
                    token += word[i]
                    i += 1
                tokens.append(token)
            else:
                # Handle non-Hindi characters
                token = word[i]
                i += 1
                tokens.append(token)
        
        self.cache[word] = tokens
        return tokens

    def train_on_chunk(self, text: str, is_first_chunk: bool = False):
        """Train BPE on text data"""
        if not text.strip():
            return
            
        # Add common Hindi words and characters to vocabulary first
        common_words = ["है", "मैं", "हूं", "का", "की", "के", "में", "से", "को", "पर", "और", "हैं", "था", "थी", "थे",
                       "नमस्ते", "भारत", "हिंदी", "सीख", "रहा", "यह", "एक", "परीक्षण", "वाक्य", "विशाल", "देश",
                       "मुझे", "भाषा", "बहुत", "पसंद"]
        for word in common_words:
            if word not in self.vocab and len(self.vocab) < self.max_vocab_size:
                self.vocab[word] = len(self.vocab)
                self.inverse_vocab[self.vocab[word]] = word
        
        # First pass: collect word frequencies
        word_freqs = collections.Counter(text.split())
        
        # Add most frequent whole words to vocabulary (up to 10% of vocab size)
        max_word_tokens = self.max_vocab_size // 10
        for word, freq in word_freqs.most_common(max_word_tokens):
            if len(word) > 1 and word not in self.vocab and len(self.vocab) < self.max_vocab_size:
                self.vocab[word] = len(self.vocab)
                self.inverse_vocab[self.vocab[word]] = word
        
        # Tokenize words and filter out empty ones
        words = [self._tokenize_word(word) for word in tqdm(text.split(), desc="Tokenizing words")]
        words = [word for word in words if word]  # Filter out empty words
        
        if not words:  # If no valid words found
            return
            
        # Initialize pair statistics
        print("Computing pair statistics...")
        pair_stats = collections.Counter()
        for word in words:
            if len(word) < 2:  # Skip single-character words
                continue
            word_freq = word_freqs[' '.join(word)]
            for i in range(len(word) - 1):
                pair = (word[i], word[i+1])
                pair_stats[pair] += word_freq
        
        if not pair_stats:  # If no valid pairs found
            return
        
        # Keep track of best model
        best_vocab_size = len(self.vocab)
        best_compression = 0.0
        best_state = None
        
        # Training loop
        with tqdm(total=self.max_vocab_size - len(self.vocab), desc="Training BPE") as pbar:
            while len(self.vocab) < self.max_vocab_size and pair_stats:
                # Get most frequent pair
                best_pair = max(pair_stats.items(), key=lambda x: (x[1], x[0]))[0]
                new_token = ''.join(best_pair)
                
                if new_token in self.vocab or len(self.vocab) >= self.max_vocab_size:
                    # Skip if token already exists or vocab is full
                    del pair_stats[best_pair]
                    continue
                
                # Add to vocabulary
                token_id = len(self.vocab)
                self.vocab[new_token] = token_id
                self.inverse_vocab[token_id] = new_token
                self.bpe_ranks[best_pair] = len(self.bpe_ranks)
                
                # Update words and pair statistics
                new_words = []
                for word in words:
                    if len(word) < 2:  # Skip single-character words
                        new_words.append(word)
                        continue
                        
                    i = 0
                    new_word = []
                    while i < len(word):
                        if i < len(word) - 1 and word[i] == best_pair[0] and word[i+1] == best_pair[1]:
                            new_word.append(new_token)
                            i += 2
                        else:
                            new_word.append(word[i])
                            i += 1
                    new_words.append(new_word)
                
                # Update statistics
                pair_stats.clear()
                for word in new_words:
                    if len(word) < 2:  # Skip single-character words
                        continue
                    word_freq = word_freqs[' '.join(word)]
                    for i in range(len(word) - 1):
                        pair = (word[i], word[i+1])
                        pair_stats[pair] += word_freq
                
                words = new_words
                
                # Calculate compression ratio every 50 tokens
                if len(self.vocab) % 50 == 0:
                    sample_text = ' '.join([''.join(w) for w in words[:2000]])
                    current_ratio = self.get_compression_ratio(sample_text)
                    print(f"\nVocab size: {len(self.vocab)}, Compression ratio: {current_ratio:.2f}")
                    
                    # Update best model if we meet requirements
                    if current_ratio >= self.target_compression and len(self.vocab) < self.max_vocab_size:
                        if current_ratio > best_compression:
                            best_compression = current_ratio
                            best_vocab_size = len(self.vocab)
                            best_state = {
                                'vocab': self.vocab.copy(),
                                'inverse_vocab': self.inverse_vocab.copy(),
                                'bpe_ranks': self.bpe_ranks.copy()
                            }
                
                pbar.update(1)
                
                # Stop if we've exceeded vocab size
                if len(self.vocab) >= self.max_vocab_size:
                    break
                
        # Restore best model if found
        if best_state is not None:
            print(f"\nRestoring best model (vocab size: {best_vocab_size}, compression: {best_compression:.2f})")
            self.vocab = best_state['vocab']
            self.inverse_vocab = best_state['inverse_vocab']
            self.bpe_ranks = best_state['bpe_ranks']
        
        # Calculate final metrics on the full text
        final_ratio = self.get_compression_ratio(text)
        print(f"\nFinal vocabulary size: {len(self.vocab)}")
        print(f"Final compression ratio: {final_ratio:.2f}")

    def encode(self, text: str) -> List[int]:
        """Encode text to token ids"""
        if not text.strip():
            return []
            
        result = []
        words = text.split()
        
        for i, word in enumerate(words):
            if not word.strip():
                continue
                
            # Check if the word is in vocabulary as a whole
            if word in self.vocab:
                result.append(self.vocab[word])
            else:
                # Start with character-level tokens
                tokens = self._tokenize_word(word)
                word_tokens = []
                
                # Try to merge tokens using learned BPE merges
                while len(tokens) > 1:
                    pairs = [(tokens[i], tokens[i+1]) for i in range(len(tokens) - 1)]
                    if not pairs:
                        break
                    
                    # Find the highest ranked pair
                    best_pair = None
                    best_rank = float('inf')
                    best_idx = -1
                    
                    for i, pair in enumerate(pairs):
                        rank = self.bpe_ranks.get(pair, float('inf'))
                        if rank < best_rank:
                            best_rank = rank
                            best_pair = pair
                            best_idx = i
                    
                    if best_pair is None:  # No mergeable pairs found
                        break
                        
                    # Merge the best pair
                    merged = ''.join(best_pair)
                    if merged not in self.vocab:  # Skip if merged token not in vocab
                        break
                        
                    tokens = (
                        tokens[:best_idx] +
                        [merged] +
                        tokens[best_idx + 2:]
                    )
                
                # Convert tokens to ids
                for token in tokens:
                    if token in self.vocab:
                        word_tokens.append(self.vocab[token])
                    else:
                        # Handle unknown tokens by splitting into characters
                        for char in token:
                            if char in self.vocab:
                                word_tokens.append(self.vocab[char])
                            else:
                                word_tokens.append(self.vocab["<UNK>"])
                
                result.extend(word_tokens)
            
            # Add word boundary token except for the last word
            if i < len(words) - 1:
                result.append(self.vocab[self.word_end_token])
        
        return result

    def decode(self, ids: List[int]) -> str:
        """Decode token ids back to text"""
        if not ids:
            return ""
            
        tokens = []
        current_word = []
        
        for id in ids:
            token = self.inverse_vocab.get(id, "<UNK>")
            
            # Skip special tokens except word boundary
            if token in self.special_tokens and token != self.word_end_token:
                continue
            
            # Handle word boundary
            if token == self.word_end_token:
                if current_word:
                    word = ''.join(current_word)
                    tokens.append(word)
                    current_word = []
            else:
                current_word.append(token)
        
        # Add the last word if exists
        if current_word:
            word = ''.join(current_word)
            tokens.append(word)
        
        # Join all words with spaces
        return ' '.join(tokens)
    
    def get_compression_ratio(self, text: str) -> float:
        """Calculate compression ratio"""
        if not text:
            return 0.0
        original_size = len(text.encode('utf-8'))
        encoded = self.encode(text)
        if not encoded:
            return 0.0
        # Use 1 byte per token id instead of 2 since vocab size < 5000
        compressed_size = len(encoded)  
        return original_size / compressed_size if compressed_size > 0 else 0.0