Spaces:
Running
Running
jatingocodeo
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
from src.hindi_bpe import HindiBPE
|
|
|
|
|
3 |
|
4 |
# Initialize the tokenizer
|
5 |
tokenizer = HindiBPE(max_vocab_size=5000, target_compression=3.2)
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def process_text(text: str, mode: str) -> str:
|
8 |
"""Process text using the tokenizer"""
|
9 |
if not text.strip():
|
@@ -27,11 +43,12 @@ iface = gr.Interface(
|
|
27 |
gr.Radio(["Encode", "Encode & Decode"], label="Operation", value="Encode & Decode")
|
28 |
],
|
29 |
outputs=gr.Textbox(label="Result"),
|
30 |
-
title="Hindi BPE Tokenizer",
|
31 |
-
description="""This is a Byte Pair Encoding (BPE) tokenizer
|
32 |
Features:
|
33 |
- Vocabulary size: < 5000 tokens
|
34 |
- Compression ratio: ≥ 3.2
|
|
|
35 |
- Proper handling of Hindi Unicode characters and combining marks""",
|
36 |
examples=[
|
37 |
["नमस्ते भारत", "Encode & Decode"],
|
|
|
1 |
import gradio as gr
|
2 |
from src.hindi_bpe import HindiBPE
|
3 |
+
import pickle
|
4 |
+
import os
|
5 |
|
6 |
# Initialize the tokenizer
|
7 |
tokenizer = HindiBPE(max_vocab_size=5000, target_compression=3.2)
|
8 |
|
9 |
+
# Load production model state
|
10 |
+
model_file = 'hindi_bpe_model.pkl'
|
11 |
+
if os.path.exists(model_file):
|
12 |
+
print("Loading production model...")
|
13 |
+
with open(model_file, 'rb') as f:
|
14 |
+
state = pickle.load(f)
|
15 |
+
tokenizer.vocab = state['vocab']
|
16 |
+
tokenizer.inverse_vocab = state['inverse_vocab']
|
17 |
+
tokenizer.bpe_ranks = state['bpe_ranks']
|
18 |
+
print(f"Model loaded successfully!")
|
19 |
+
print(f"Vocabulary size: {len(tokenizer.vocab)} tokens")
|
20 |
+
else:
|
21 |
+
raise FileNotFoundError("Production model not found! Please run train_bpe.py first and copy the model file.")
|
22 |
+
|
23 |
def process_text(text: str, mode: str) -> str:
|
24 |
"""Process text using the tokenizer"""
|
25 |
if not text.strip():
|
|
|
43 |
gr.Radio(["Encode", "Encode & Decode"], label="Operation", value="Encode & Decode")
|
44 |
],
|
45 |
outputs=gr.Textbox(label="Result"),
|
46 |
+
title="Hindi BPE Tokenizer (Production Model)",
|
47 |
+
description="""This is a production-grade Byte Pair Encoding (BPE) tokenizer trained on 1 million Hindi sentences.
|
48 |
Features:
|
49 |
- Vocabulary size: < 5000 tokens
|
50 |
- Compression ratio: ≥ 3.2
|
51 |
+
- Trained on 1M sentences
|
52 |
- Proper handling of Hindi Unicode characters and combining marks""",
|
53 |
examples=[
|
54 |
["नमस्ते भारत", "Encode & Decode"],
|