jaymojnidar commited on
Commit
e53ba59
1 Parent(s): e160962

Introducing the fast classifiers

Browse files
Files changed (4) hide show
  1. app.py +21 -0
  2. car_fish_bird_dog_forrest.pkl +3 -0
  3. cat.jpg +0 -0
  4. requirements.txt +2 -0
app.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from fastai.vision.all import *
3
+ import skimage
4
+
5
+ learn = load_learner('car_fish_bird_dog_forrest.pkl')
6
+
7
+ labels = learn.dls.vocab
8
+ def predict(img):
9
+ img = PILImage.create(img)
10
+ pred,pred_idx,probs = learn.predict(img)
11
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
12
+
13
+ title = "Pet Breed Classifier"
14
+ description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
15
+ article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
16
+ examples = ['cat.jpg']
17
+ interpretation='default'
18
+ enable_queue=True
19
+
20
+ gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
21
+
car_fish_bird_dog_forrest.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1dbdd42f93b86c80a369652de75c996c1bf910062a4fbde159decc3cdb8e63e
3
+ size 46979620
cat.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ fastai>=2
2
+ scikit-image