Spaces:
Paused
Paused
import os | |
from threading import Thread | |
from typing import Iterator | |
import torch | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig | |
from huggingface_hub import login | |
model_id = 'jaymojnidar/Llama-2-7b-chat-hf-sharded-bf16-5GBMAX' | |
if not torch.cuda.is_available(): | |
tok = os.environ['HF_TOKEN'] | |
device_map = { | |
"transformer.word_embeddings": "cpu", | |
"transformer.word_embeddings_layernorm": "cpu", | |
"lm_head": "cpu", | |
"transformer.h": "cpu", | |
"transformer.ln_f": "cpu", | |
"model.layers": "cpu", | |
"model.norm": "cpu", | |
} | |
login(new_session=True, | |
write_permission=False, | |
token=tok | |
#, token="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" | |
) | |
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True,llm_int8_threshold=200.0) | |
config = AutoConfig.from_pretrained(model_id, | |
use_auth_token=True) | |
config.pretraining_tp = 1 | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
config=config, | |
quantization_config=quantization_config, | |
torch_dtype=torch.float16, | |
device_map=device_map, | |
use_auth_token=True | |
) | |
else: | |
model = None | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def get_prompt(message: str, chat_history: list[tuple[str, str]], | |
system_prompt: str) -> str: | |
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n'] | |
# The first user input is _not_ stripped | |
do_strip = False | |
for user_input, response in chat_history: | |
user_input = user_input.strip() if do_strip else user_input | |
do_strip = True | |
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ') | |
message = message.strip() if do_strip else message | |
texts.append(f'{message} [/INST]') | |
return ''.join(texts) | |
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int: | |
prompt = get_prompt(message, chat_history, system_prompt) | |
input_ids = tokenizer([prompt], return_tensors='np', add_special_tokens=False)['input_ids'] | |
return input_ids.shape[-1] | |
def run(message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.8, | |
top_p: float = 0.95, | |
top_k: int = 50) -> Iterator[str]: | |
prompt = get_prompt(message, chat_history, system_prompt) | |
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to(torch.device) #.to('cuda') | |
streamer = TextIteratorStreamer(tokenizer, | |
timeout=10., | |
skip_prompt=True, | |
skip_special_tokens=True) | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield ''.join(outputs) | |