Jay Noppone
Update model.py (#1)
33db61f verified
raw
history blame
735 Bytes
import torch
from transformers import BertTokenizer, BertForSequenceClassification
# Tokenizer and Model Initialization
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
# Predicting Function
def predict(text):
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
outputs = model(**inputs)
predictions = torch.argmax(outputs.logits, dim=-1)
return "AI-generated" if predictions.item() == 1 else "Human-written"
# Example Usage (commented out as it's not needed for web deployment)
# user_input = input("Enter the text you want to classify: ")
# print("Classified as:", predict(user_input))