jaynopponep commited on
Commit
8768724
·
1 Parent(s): ea4b4e5

Adding Model... let's test it

Browse files
Files changed (1) hide show
  1. model.py +64 -0
model.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import torch
3
+ from sklearn.model_selection import train_test_split
4
+ from transformers import BertTokenizer, BertForSequenceClassification, TrainingArguments, Trainer
5
+
6
+ df = pd.read_csv('Training_Essay_Data 1.csv.csv')
7
+
8
+ train_df, eval_df = train_test_split(df, test_size=0.1) # Here 10% for validation
9
+
10
+ tokenizer = BertTokenizer.from_pretrained('bert-baseuncased')
11
+
12
+
13
+ def tokenize_function(examples):
14
+ return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=512)
15
+
16
+
17
+ train_encodings = tokenize_function(train_df)
18
+ eval_encodings = tokenize_function(eval_df)
19
+
20
+
21
+ class EssayDataset(torch.utils.data.Dataset):
22
+ def __init__(self, encodings, labels):
23
+ self.encodings = encodings
24
+ self.labels = labels
25
+
26
+ def __getitem__(self, idx):
27
+ item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
28
+ item['labels'] = torch.tensor(int(self.labels[idx])) # Convert labels to tensor
29
+ return item
30
+
31
+ def __len__(self):
32
+ return len(self.labels)
33
+
34
+
35
+ train_dataset = EssayDataset(train_encodings, train_df['label'].tolist())
36
+ eval_dataset = EssayDataset(eval_encodings, eval_df['label'].tolist())
37
+
38
+ model = BertForSequenceClassification.from_pretrained('bertbase-uncased', num_labels=2)
39
+
40
+ training_args = TrainingArguments(
41
+ output_dir='./results',
42
+ num_train_epochs=3,
43
+ per_device_train_batch_size=16,
44
+ per_device_eval_batch_size=64,
45
+ warmup_steps=500,
46
+ weight_decay=0.01,
47
+ logging_dir='./logs',
48
+ )
49
+
50
+ trainer = Trainer(
51
+ model=model,
52
+ args=training_args,
53
+ train_dataset=train_dataset,
54
+ eval_dataset=eval_dataset
55
+ )
56
+
57
+ trainer.train()
58
+
59
+ user_input = input("Enter the text you want to classify: ")
60
+ inputs = tokenizer(user_input, padding=True, truncation=True,
61
+ return_tensors="pt")
62
+ outputs = model(**inputs)
63
+ predictions = torch.argmax(outputs.logits, dim=-1)
64
+ print("Classified as:", "AI-generated" if predictions.item() == 1 else "Human-written")