import torch from transformers import BertTokenizer, BertForSequenceClassification # Tokenizer and Model Initialization tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) # Load the model (Assuming it's already trained and saved in "./saved_model") # If you don't have a trained model, comment out this line. The code will use the default BERT model model = BertForSequenceClassification.from_pretrained("./saved_model") # Predicting Function def predict(text): inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=-1) return "AI-generated" if predictions.item() == 1 else "Human-written" # Get user input and predict user_input = input("Enter the text you want to classify: ") print("Classified as:", predict(user_input))