import torch from transformers import BertTokenizer, BertForSequenceClassification # Tokenizer and Model Initialization tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) # Predicting Function def predict(text): inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=-1) return "AI-generated" if predictions.item() == 1 else "Human-written" # Example Usage (commented out as it's not needed for web deployment) # user_input = input("Enter the text you want to classify: ") # print("Classified as:", predict(user_input))