File size: 13,185 Bytes
624088c
 
e52146b
 
cdb6f86
3ca0269
cdb6f86
 
3ca0269
 
624088c
879455c
 
e52146b
2f64630
 
e52146b
879455c
e52146b
 
624088c
879455c
 
 
624088c
 
 
 
 
 
 
 
 
 
 
 
879455c
 
 
624088c
 
 
 
 
 
241036e
624088c
 
 
 
 
 
 
cdb6f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8cc6af
 
 
 
 
 
 
 
 
 
 
 
cdb6f86
 
 
 
879455c
cdb6f86
 
 
 
 
 
 
 
 
 
 
 
e52146b
 
 
 
 
 
 
2f64630
 
 
 
 
e52146b
 
2f64630
e52146b
2f64630
e52146b
a8cc6af
72947d4
 
 
 
 
 
a8cc6af
72947d4
2f64630
 
 
 
 
 
 
 
 
e52146b
 
 
 
 
 
2f64630
e52146b
 
 
 
 
ab48d2d
 
e52146b
 
 
 
 
 
 
 
 
719ed9c
 
e52146b
 
 
 
72947d4
 
 
 
2f64630
 
 
 
048071f
 
 
 
2f64630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72947d4
2f64630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
048071f
 
2f64630
e52146b
 
 
 
 
 
 
 
 
cdb6f86
e52146b
cdb6f86
 
 
 
879455c
cdb6f86
 
 
 
 
1e641f1
cdb6f86
 
 
 
 
 
 
 
 
 
 
 
 
624088c
cdb6f86
 
 
 
 
 
 
 
 
 
 
 
 
 
624088c
 
 
 
 
 
 
 
879455c
 
 
624088c
 
 
 
f5d8038
624088c
241036e
624088c
 
 
 
 
 
cdb6f86
 
879455c
cdb6f86
 
879455c
cdb6f86
 
 
 
 
 
 
 
 
 
 
624088c
cdb6f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e52146b
cdb6f86
 
 
 
879455c
cdb6f86
 
 
 
 
 
 
 
 
 
 
 
624088c
f5d8038
 
 
 
 
 
 
 
 
 
 
 
 
879455c
 
 
f5d8038
 
 
 
 
 
 
 
 
e52146b
f5d8038
 
 
 
879455c
f5d8038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624088c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"use server"

import { v4 as uuidv4 } from "uuid"
import Replicate from "replicate"

import { RenderRequest, RenderedScene, RenderingEngine } from "@/types"
import { generateSeed } from "@/lib/generateSeed"
import { sleep } from "@/lib/sleep"

const renderingEngine = `${process.env.RENDERING_ENGINE || ""}` as RenderingEngine

// TODO: we should split Hugging Face and Replicate backends into separate files
const huggingFaceToken = `${process.env.AUTH_HF_API_TOKEN || ""}`
const huggingFaceInferenceEndpointUrl = `${process.env.RENDERING_HF_INFERENCE_ENDPOINT_URL || ""}`
const huggingFaceInferenceApiBaseModel = `${process.env.RENDERING_HF_INFERENCE_API_BASE_MODEL || ""}`
const huggingFaceInferenceApiRefinerModel = `${process.env.RENDERING_HF_INFERENCE_API_REFINER_MODEL || ""}`

const replicateToken = `${process.env.AUTH_REPLICATE_API_TOKEN || ""}`
const replicateModel = `${process.env.RENDERING_REPLICATE_API_MODEL || ""}`
const replicateModelVersion = `${process.env.RENDERING_REPLICATE_API_MODEL_VERSION || ""}`

const videochainToken = `${process.env.AUTH_VIDEOCHAIN_API_TOKEN || ""}`
const videochainApiUrl = `${process.env.RENDERING_VIDEOCHAIN_API_URL || ""}`

export async function newRender({
  prompt,
  // negativePrompt,
  width,
  height
}: {
  prompt: string
  // negativePrompt: string[]
  width: number
  height: number
}) {
  if (!prompt) {
    const error = `cannot call the rendering API without a prompt, aborting..`
    console.error(error)
    throw new Error(error)
  }

  let defaulResult: RenderedScene = {
    renderId: "",
    status: "error",
    assetUrl: "",
    alt: prompt || "",
    maskUrl: "",
    error: "failed to fetch the data",
    segments: []
  }


  try {
    if (renderingEngine === "REPLICATE") {
      if (!replicateToken) {
        throw new Error(`you need to configure your REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`)
      }
      if (!replicateModel) {
        throw new Error(`you need to configure your REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`)
      }
      if (!replicateModelVersion) {
        throw new Error(`you need to configure your REPLICATE_API_MODEL_VERSION in order to use the REPLICATE rendering engine`)
      }
      const replicate = new Replicate({ auth: replicateToken })

      // console.log("Calling replicate..")
      const seed = generateSeed()
      const prediction = await replicate.predictions.create({
        version: replicateModelVersion,
        input: {
          prompt: [
            "beautiful",
            "intricate details",
            prompt,
            "award winning",
            "high resolution"
          ].join(", "),
          width,
          height,
          seed
        }
      })
      
      // console.log("prediction:", prediction)

      // no need to reply straight away as images take time to generate, this isn't instantaneous
      // also our friends at Replicate won't like it if we spam them with requests
      await sleep(4000)

      return {
        renderId: prediction.id,
        status: "pending",
        assetUrl: "", 
        alt: prompt,
        error: prediction.error,
        maskUrl: "",
        segments: []
      } as RenderedScene
    } if (renderingEngine === "INFERENCE_ENDPOINT" || renderingEngine === "INFERENCE_API") {
      if (!huggingFaceToken) {
        throw new Error(`you need to configure your HF_API_TOKEN in order to use the ${renderingEngine} rendering engine`)
      }
      if (renderingEngine === "INFERENCE_ENDPOINT" && !huggingFaceInferenceEndpointUrl) {
        throw new Error(`you need to configure your RENDERING_HF_INFERENCE_ENDPOINT_URL in order to use the INFERENCE_ENDPOINT rendering engine`)
      }
      if (renderingEngine === "INFERENCE_API" && !huggingFaceInferenceApiBaseModel) {
        throw new Error(`you need to configure your RENDERING_HF_INFERENCE_API_BASE_MODEL in order to use the INFERENCE_API rendering engine`)
      }
      if (renderingEngine === "INFERENCE_API" && !huggingFaceInferenceApiRefinerModel) {
        throw new Error(`you need to configure your RENDERING_HF_INFERENCE_API_REFINER_MODEL in order to use the INFERENCE_API rendering engine`)
      }

      const baseModelUrl = renderingEngine === "INFERENCE_ENDPOINT"
        ? huggingFaceInferenceEndpointUrl
        : `https://api-inference.huggingface.co/models/${huggingFaceInferenceApiBaseModel}`

      /*
      console.log(`calling ${url} with params: `, {
        num_inference_steps: 25,
        guidance_scale: 8,
        width,
        height,
      })
      */

      const positivePrompt = [
        "beautiful",
        "intricate details",
        prompt,
        "award winning",
        "high resolution"
      ].join(", ")

      const res = await fetch(baseModelUrl, {
        method: "POST",
        headers: {
          "Content-Type": "application/json",
          Authorization: `Bearer ${huggingFaceToken}`,
        },
        body: JSON.stringify({
          inputs: positivePrompt,
          parameters: {
            num_inference_steps: 25,
            guidance_scale: 8,
            width,
            height,
          },
          use_cache: false,
        }),
        cache: "no-store",
        // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
        // next: { revalidate: 1 }
      })
  
  
      // Recommendation: handle errors
      if (res.status !== 200) {
        const content = await res.text()
        console.error(content)
        // This will activate the closest `error.js` Error Boundary
        throw new Error('Failed to fetch data')
      }

      const blob = await res.arrayBuffer()

      const contentType = res.headers.get('content-type')

      let assetUrl = `data:${contentType};base64,${Buffer.from(blob).toString('base64')}`
      
      // note: there is no "refiner" step yet for custom inference endpoint
      // you probably don't need it anyway, as you probably want to deploy an all-in-one model instead for perf reasons
      
      // update: right now it is not possible to use it from the Inference API either:
      // "Model type not found or pipeline not implemented"
      /*
      if (renderingEngine === "INFERENCE_API") {
        try {
          const refinerModelUrl = `https://api-inference.huggingface.co/models/${huggingFaceInferenceApiRefinerModel}`

          const res = await fetch(refinerModelUrl, {
            method: "POST",
            headers: {
              "Content-Type": "application/json",
              Authorization: `Bearer ${huggingFaceToken}`,
            },
            body: JSON.stringify({
              data: assetUrl,
              parameters: {
                prompt: positivePrompt,
                num_inference_steps: 25,
                guidance_scale: 8,
                width,
                height,
              },
              use_cache: false,
            }),
            cache: "no-store",
            // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
            // next: { revalidate: 1 }
          })
      
      
          // Recommendation: handle errors
          if (res.status !== 200) {
            const content = await res.text()
            console.error(content)
            // This will activate the closest `error.js` Error Boundary
            throw new Error('Failed to fetch data')
          }

          const blob = await res.arrayBuffer()

          const contentType = res.headers.get('content-type')

          assetUrl = `data:${contentType};base64,${Buffer.from(blob).toString('base64')}`
          
        } catch (err) {
          console.log(`Refiner step failed, but this is not a blocker. Error details: ${err}`)
        }
      } */


      return {
        renderId: uuidv4(),
        status: "completed",
        assetUrl, 
        alt: prompt,
        error: "",
        maskUrl: "",
        segments: []
      } as RenderedScene
    } else {
      const res = await fetch(`${videochainApiUrl}/render`, {
        method: "POST",
        headers: {
          Accept: "application/json",
          "Content-Type": "application/json",
          Authorization: `Bearer ${videochainToken}`,
        },
        body: JSON.stringify({
          prompt,
          // negativePrompt, unused for now
          nbFrames: 1,
          nbSteps: 30, // 20 = fast, 30 = better, 50 = best
          actionnables: [], // ["text block"],
          segmentation: "disabled", // "firstframe", // one day we will remove this param, to make it automatic
          width,
          height,

          // no need to upscale right now as we generate tiny panels
          // maybe later we can provide an "export" button to PDF
          // unfortunately there are too many requests for upscaling,
          // the server is always down
          upscalingFactor: 1, // 2,

          // analyzing doesn't work yet, it seems..
          analyze: false, // analyze: true,

          cache: "ignore"
        } as Partial<RenderRequest>),
        cache: 'no-store',
      // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
      // next: { revalidate: 1 }
      })

      if (res.status !== 200) {
        throw new Error('Failed to fetch data')
      }
      
      const response = (await res.json()) as RenderedScene
      return response
    }
  } catch (err) {
    console.error(err)
    return defaulResult
  }
}

export async function getRender(renderId: string) {
  if (!renderId) {
    const error = `cannot call the rendering API without a renderId, aborting..`
    console.error(error)
    throw new Error(error)
  }

  let defaulResult: RenderedScene = {
    renderId: "",
    status: "pending",
    assetUrl: "",
    alt: "",
    maskUrl: "",
    error: "failed to fetch the data",
    segments: []
  }

  try {
    if (renderingEngine === "REPLICATE") {
      if (!replicateToken) {
        throw new Error(`you need to configure your AUTH_REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`)
      }
      if (!replicateModel) {
        throw new Error(`you need to configure your RENDERING_REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`)
      }

       const res = await fetch(`https://api.replicate.com/v1/predictions/${renderId}`, {
        method: "GET",
        headers: {
          Authorization: `Token ${replicateToken}`,
        },
        cache: 'no-store',
      // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
      // next: { revalidate: 1 }
      })
    
      // Recommendation: handle errors
      if (res.status !== 200) {
        // This will activate the closest `error.js` Error Boundary
        throw new Error('Failed to fetch data')
      }
      
      const response = (await res.json()) as any

      return  {
        renderId,
        status: response?.error ? "error" : response?.status === "succeeded" ?  "completed" : "pending",
        assetUrl: `${response?.output || ""}`,
        alt: `${response?.input?.prompt || ""}`,
        error: `${response?.error || ""}`,
        maskUrl: "",
        segments: []
      } as RenderedScene
    } else {
      // console.log(`calling GET ${apiUrl}/render with renderId: ${renderId}`)
      const res = await fetch(`${videochainApiUrl}/render/${renderId}`, {
        method: "GET",
        headers: {
          Accept: "application/json",
          "Content-Type": "application/json",
          Authorization: `Bearer ${videochainToken}`,
        },
        cache: 'no-store',
      // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
      // next: { revalidate: 1 }
      })
      
      if (res.status !== 200) {
        throw new Error('Failed to fetch data')
      }
      
      const response = (await res.json()) as RenderedScene
      return response
    }
  } catch (err) {
    console.error(err)
    defaulResult.status = "error"
    defaulResult.error = `${err}`
    return defaulResult
  }
}

export async function upscaleImage(image: string): Promise<{
  assetUrl: string
  error: string
}> {
  if (!image) {
    const error = `cannot call the rendering API without an image, aborting..`
    console.error(error)
    throw new Error(error)
  }

  let defaulResult = {
    assetUrl: "",
    error: "failed to fetch the data",
  }

  try {
    // console.log(`calling GET ${apiUrl}/render with renderId: ${renderId}`)
    const res = await fetch(`${videochainApiUrl}/upscale`, {
      method: "POST",
      headers: {
        Accept: "application/json",
        "Content-Type": "application/json",
        Authorization: `Bearer ${videochainToken}`,
      },
      cache: 'no-store',
      body: JSON.stringify({ image, factor: 3 })
    // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
    // next: { revalidate: 1 }
    })

    if (res.status !== 200) {
      throw new Error('Failed to fetch data')
    }
    
    const response = (await res.json()) as {
      assetUrl: string
      error: string
    }
    return response
  } catch (err) {
    console.error(err)
    return defaulResult
  }
}