Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 13,065 Bytes
624088c e52146b cdb6f86 3ca0269 cdb6f86 3ca0269 624088c 879455c e52146b 2f64630 e52146b 879455c e52146b 624088c 879455c 624088c 81eb27e 624088c 81eb27e 624088c c65c1bb 624088c 879455c 624088c 241036e 624088c 81eb27e 624088c cdb6f86 a8cc6af 81eb27e a8cc6af cdb6f86 7967a54 879455c cdb6f86 e52146b 2f64630 e52146b 2f64630 e52146b 2f64630 e52146b 2f64630 81eb27e 2f64630 e52146b 2f64630 e52146b 81eb27e e52146b ab48d2d 81eb27e e52146b 719ed9c e52146b 72947d4 2f64630 048071f 2f64630 81eb27e 2f64630 81eb27e 2f64630 81eb27e 2f64630 81eb27e 2f64630 72947d4 2f64630 81eb27e 2f64630 81eb27e 2f64630 81eb27e 2f64630 81eb27e 048071f 2f64630 e52146b cdb6f86 7967a54 cdb6f86 879455c cdb6f86 81eb27e cdb6f86 624088c cdb6f86 7967a54 cdb6f86 624088c 879455c 624088c f5d8038 624088c 241036e 624088c cdb6f86 879455c cdb6f86 879455c cdb6f86 624088c cdb6f86 e52146b cdb6f86 879455c cdb6f86 624088c f5d8038 879455c f5d8038 e52146b f5d8038 879455c f5d8038 624088c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
"use server"
import { v4 as uuidv4 } from "uuid"
import Replicate from "replicate"
import { RenderRequest, RenderedScene, RenderingEngine } from "@/types"
import { generateSeed } from "@/lib/generateSeed"
import { sleep } from "@/lib/sleep"
const renderingEngine = `${process.env.RENDERING_ENGINE || ""}` as RenderingEngine
// TODO: we should split Hugging Face and Replicate backends into separate files
const huggingFaceToken = `${process.env.AUTH_HF_API_TOKEN || ""}`
const huggingFaceInferenceEndpointUrl = `${process.env.RENDERING_HF_INFERENCE_ENDPOINT_URL || ""}`
const huggingFaceInferenceApiBaseModel = `${process.env.RENDERING_HF_INFERENCE_API_BASE_MODEL || ""}`
const huggingFaceInferenceApiRefinerModel = `${process.env.RENDERING_HF_INFERENCE_API_REFINER_MODEL || ""}`
const replicateToken = `${process.env.AUTH_REPLICATE_API_TOKEN || ""}`
const replicateModel = `${process.env.RENDERING_REPLICATE_API_MODEL || ""}`
const replicateModelVersion = `${process.env.RENDERING_REPLICATE_API_MODEL_VERSION || ""}`
const videochainToken = `${process.env.AUTH_VIDEOCHAIN_API_TOKEN || ""}`
const videochainApiUrl = `${process.env.RENDERING_VIDEOCHAIN_API_URL || ""}`
export async function newRender({
prompt,
// negativePrompt,
width,
height,
withCache
}: {
prompt: string
// negativePrompt: string[]
width: number
height: number
withCache: boolean
}) {
// throw new Error("Planned maintenance")
if (!prompt) {
const error = `cannot call the rendering API without a prompt, aborting..`
console.error(error)
throw new Error(error)
}
let defaulResult: RenderedScene = {
renderId: "",
status: "error",
assetUrl: "",
alt: prompt || "",
maskUrl: "",
error: "failed to fetch the data",
segments: []
}
const nbInferenceSteps = 30
const guidanceScale = 9
try {
if (renderingEngine === "REPLICATE") {
if (!replicateToken) {
throw new Error(`you need to configure your REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`)
}
if (!replicateModel) {
throw new Error(`you need to configure your REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`)
}
if (!replicateModelVersion) {
throw new Error(`you need to configure your REPLICATE_API_MODEL_VERSION in order to use the REPLICATE rendering engine`)
}
const replicate = new Replicate({ auth: replicateToken })
const seed = generateSeed()
const prediction = await replicate.predictions.create({
version: replicateModelVersion,
input: {
prompt: [
"beautiful",
// "intricate details",
prompt,
"award winning",
"high resolution"
].join(", "),
width,
height,
seed
}
})
// no need to reply straight away as images take time to generate, this isn't instantaneous
// also our friends at Replicate won't like it if we spam them with requests
await sleep(4000)
return {
renderId: prediction.id,
status: "pending",
assetUrl: "",
alt: prompt,
error: prediction.error,
maskUrl: "",
segments: []
} as RenderedScene
} if (renderingEngine === "INFERENCE_ENDPOINT" || renderingEngine === "INFERENCE_API") {
if (!huggingFaceToken) {
throw new Error(`you need to configure your HF_API_TOKEN in order to use the ${renderingEngine} rendering engine`)
}
if (renderingEngine === "INFERENCE_ENDPOINT" && !huggingFaceInferenceEndpointUrl) {
throw new Error(`you need to configure your RENDERING_HF_INFERENCE_ENDPOINT_URL in order to use the INFERENCE_ENDPOINT rendering engine`)
}
if (renderingEngine === "INFERENCE_API" && !huggingFaceInferenceApiBaseModel) {
throw new Error(`you need to configure your RENDERING_HF_INFERENCE_API_BASE_MODEL in order to use the INFERENCE_API rendering engine`)
}
if (renderingEngine === "INFERENCE_API" && !huggingFaceInferenceApiRefinerModel) {
throw new Error(`you need to configure your RENDERING_HF_INFERENCE_API_REFINER_MODEL in order to use the INFERENCE_API rendering engine`)
}
const baseModelUrl = renderingEngine === "INFERENCE_ENDPOINT"
? huggingFaceInferenceEndpointUrl
: `https://api-inference.huggingface.co/models/${huggingFaceInferenceApiBaseModel}`
const positivePrompt = [
"beautiful",
// "intricate details",
prompt,
"award winning",
"high resolution"
].join(", ")
const res = await fetch(baseModelUrl, {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${huggingFaceToken}`,
},
body: JSON.stringify({
inputs: positivePrompt,
parameters: {
num_inference_steps: nbInferenceSteps,
guidance_scale: guidanceScale,
width,
height,
},
// this doesn't do what you think it does
use_cache: false, // withCache,
}),
cache: "no-store",
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
// next: { revalidate: 1 }
})
// Recommendation: handle errors
if (res.status !== 200) {
const content = await res.text()
console.error(content)
// This will activate the closest `error.js` Error Boundary
throw new Error('Failed to fetch data')
}
const blob = await res.arrayBuffer()
const contentType = res.headers.get('content-type')
let assetUrl = `data:${contentType};base64,${Buffer.from(blob).toString('base64')}`
// note: there is no "refiner" step yet for custom inference endpoint
// you probably don't need it anyway, as you probably want to deploy an all-in-one model instead for perf reasons
if (renderingEngine === "INFERENCE_API") {
try {
const refinerModelUrl = `https://api-inference.huggingface.co/models/${huggingFaceInferenceApiRefinerModel}`
const res = await fetch(refinerModelUrl, {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${huggingFaceToken}`,
},
body: JSON.stringify({
inputs: Buffer.from(blob).toString('base64'),
parameters: {
prompt: positivePrompt,
num_inference_steps: nbInferenceSteps,
guidance_scale: guidanceScale,
width,
height,
},
// this doesn't do what you think it does
use_cache: false, // withCache,
}),
cache: "no-store",
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
// next: { revalidate: 1 }
})
// Recommendation: handle errors
if (res.status !== 200) {
const content = await res.json()
// if (content.error.include("currently loading")) {
// console.log("refiner isn't ready yet")
throw new Error(content?.error || 'Failed to fetch data')
}
const refinedBlob = await res.arrayBuffer()
const contentType = res.headers.get('content-type')
assetUrl = `data:${contentType};base64,${Buffer.from(refinedBlob).toString('base64')}`
} catch (err) {
console.log(`Refiner step failed, but this is not a blocker. Error details: ${err}`)
}
}
return {
renderId: uuidv4(),
status: "completed",
assetUrl,
alt: prompt,
error: "",
maskUrl: "",
segments: []
} as RenderedScene
} else {
const res = await fetch(`${videochainApiUrl}${videochainApiUrl.endsWith("/") ? "" : "/"}render`, {
method: "POST",
headers: {
Accept: "application/json",
"Content-Type": "application/json",
Authorization: `Bearer ${videochainToken}`,
},
body: JSON.stringify({
prompt,
// negativePrompt, unused for now
nbFrames: 1,
nbSteps: nbInferenceSteps, // 20 = fast, 30 = better, 50 = best
actionnables: [], // ["text block"],
segmentation: "disabled", // "firstframe", // one day we will remove this param, to make it automatic
width,
height,
// no need to upscale right now as we generate tiny panels
// maybe later we can provide an "export" button to PDF
// unfortunately there are too many requests for upscaling,
// the server is always down
upscalingFactor: 1, // 2,
// analyzing doesn't work yet, it seems..
analyze: false, // analyze: true,
cache: "ignore"
} as Partial<RenderRequest>),
cache: 'no-store',
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
// next: { revalidate: 1 }
})
if (res.status !== 200) {
throw new Error('Failed to fetch data')
}
const response = (await res.json()) as RenderedScene
return response
}
} catch (err) {
console.error(err)
return defaulResult
}
}
export async function getRender(renderId: string) {
if (!renderId) {
const error = `cannot call the rendering API without a renderId, aborting..`
console.error(error)
throw new Error(error)
}
let defaulResult: RenderedScene = {
renderId: "",
status: "pending",
assetUrl: "",
alt: "",
maskUrl: "",
error: "failed to fetch the data",
segments: []
}
try {
if (renderingEngine === "REPLICATE") {
if (!replicateToken) {
throw new Error(`you need to configure your AUTH_REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`)
}
if (!replicateModel) {
throw new Error(`you need to configure your RENDERING_REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`)
}
const res = await fetch(`https://api.replicate.com/v1/predictions/${renderId}`, {
method: "GET",
headers: {
Authorization: `Token ${replicateToken}`,
},
cache: 'no-store',
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
// next: { revalidate: 1 }
})
// Recommendation: handle errors
if (res.status !== 200) {
// This will activate the closest `error.js` Error Boundary
throw new Error('Failed to fetch data')
}
const response = (await res.json()) as any
return {
renderId,
status: response?.error ? "error" : response?.status === "succeeded" ? "completed" : "pending",
assetUrl: `${response?.output || ""}`,
alt: `${response?.input?.prompt || ""}`,
error: `${response?.error || ""}`,
maskUrl: "",
segments: []
} as RenderedScene
} else {
const res = await fetch(`${videochainApiUrl}/render/${renderId}`, {
method: "GET",
headers: {
Accept: "application/json",
"Content-Type": "application/json",
Authorization: `Bearer ${videochainToken}`,
},
cache: 'no-store',
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
// next: { revalidate: 1 }
})
if (res.status !== 200) {
throw new Error('Failed to fetch data')
}
const response = (await res.json()) as RenderedScene
return response
}
} catch (err) {
console.error(err)
defaulResult.status = "error"
defaulResult.error = `${err}`
return defaulResult
}
}
export async function upscaleImage(image: string): Promise<{
assetUrl: string
error: string
}> {
if (!image) {
const error = `cannot call the rendering API without an image, aborting..`
console.error(error)
throw new Error(error)
}
let defaulResult = {
assetUrl: "",
error: "failed to fetch the data",
}
try {
const res = await fetch(`${videochainApiUrl}/upscale`, {
method: "POST",
headers: {
Accept: "application/json",
"Content-Type": "application/json",
Authorization: `Bearer ${videochainToken}`,
},
cache: 'no-store',
body: JSON.stringify({ image, factor: 3 })
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
// next: { revalidate: 1 }
})
if (res.status !== 200) {
throw new Error('Failed to fetch data')
}
const response = (await res.json()) as {
assetUrl: string
error: string
}
return response
} catch (err) {
console.error(err)
return defaulResult
}
}
|