"use server" import { v4 as uuidv4 } from "uuid" import Replicate from "replicate" import { RenderRequest, RenderedScene, RenderingEngine } from "@/types" import { generateSeed } from "@/lib/generateSeed" import { sleep } from "@/lib/sleep" const renderingEngine = `${process.env.RENDERING_ENGINE || ""}` as RenderingEngine // TODO: we should split Hugging Face and Replicate backends into separate files const huggingFaceToken = `${process.env.AUTH_HF_API_TOKEN || ""}` const huggingFaceInferenceEndpointUrl = `${process.env.RENDERING_HF_INFERENCE_ENDPOINT_URL || ""}` const huggingFaceInferenceApiBaseModel = `${process.env.RENDERING_HF_INFERENCE_API_BASE_MODEL || ""}` const huggingFaceInferenceApiRefinerModel = `${process.env.RENDERING_HF_INFERENCE_API_REFINER_MODEL || ""}` const replicateToken = `${process.env.AUTH_REPLICATE_API_TOKEN || ""}` const replicateModel = `${process.env.RENDERING_REPLICATE_API_MODEL || ""}` const replicateModelVersion = `${process.env.RENDERING_REPLICATE_API_MODEL_VERSION || ""}` const videochainToken = `${process.env.AUTH_VIDEOCHAIN_API_TOKEN || ""}` const videochainApiUrl = `${process.env.RENDERING_VIDEOCHAIN_API_URL || ""}` export async function newRender({ prompt, // negativePrompt, width, height }: { prompt: string // negativePrompt: string[] width: number height: number }) { if (!prompt) { const error = `cannot call the rendering API without a prompt, aborting..` console.error(error) throw new Error(error) } let defaulResult: RenderedScene = { renderId: "", status: "error", assetUrl: "", alt: prompt || "", maskUrl: "", error: "failed to fetch the data", segments: [] } try { if (renderingEngine === "REPLICATE") { if (!replicateToken) { throw new Error(`you need to configure your REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`) } if (!replicateModel) { throw new Error(`you need to configure your REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`) } if (!replicateModelVersion) { throw new Error(`you need to configure your REPLICATE_API_MODEL_VERSION in order to use the REPLICATE rendering engine`) } const replicate = new Replicate({ auth: replicateToken }) // console.log("Calling replicate..") const seed = generateSeed() const prediction = await replicate.predictions.create({ version: replicateModelVersion, input: { prompt: [ "beautiful", "intricate details", prompt, "award winning", "high resolution" ].join(", "), width, height, seed } }) // console.log("prediction:", prediction) // no need to reply straight away as images take time to generate, this isn't instantaneous // also our friends at Replicate won't like it if we spam them with requests await sleep(4000) return { renderId: prediction.id, status: "pending", assetUrl: "", alt: prompt, error: prediction.error, maskUrl: "", segments: [] } as RenderedScene } if (renderingEngine === "INFERENCE_ENDPOINT" || renderingEngine === "INFERENCE_API") { if (!huggingFaceToken) { throw new Error(`you need to configure your HF_API_TOKEN in order to use the ${renderingEngine} rendering engine`) } if (renderingEngine === "INFERENCE_ENDPOINT" && !huggingFaceInferenceEndpointUrl) { throw new Error(`you need to configure your RENDERING_HF_INFERENCE_ENDPOINT_URL in order to use the INFERENCE_ENDPOINT rendering engine`) } if (renderingEngine === "INFERENCE_API" && !huggingFaceInferenceApiBaseModel) { throw new Error(`you need to configure your RENDERING_HF_INFERENCE_API_BASE_MODEL in order to use the INFERENCE_API rendering engine`) } if (renderingEngine === "INFERENCE_API" && !huggingFaceInferenceApiRefinerModel) { throw new Error(`you need to configure your RENDERING_HF_INFERENCE_API_REFINER_MODEL in order to use the INFERENCE_API rendering engine`) } const baseModelUrl = renderingEngine === "INFERENCE_ENDPOINT" ? huggingFaceInferenceEndpointUrl : `https://api-inference.huggingface.co/models/${huggingFaceInferenceApiBaseModel}` /* console.log(`calling ${url} with params: `, { num_inference_steps: 25, guidance_scale: 8, width, height, }) */ const positivePrompt = [ "beautiful", "intricate details", prompt, "award winning", "high resolution" ].join(", ") const res = await fetch(baseModelUrl, { method: "POST", headers: { "Content-Type": "application/json", Authorization: `Bearer ${huggingFaceToken}`, }, body: JSON.stringify({ inputs: positivePrompt, parameters: { num_inference_steps: 25, guidance_scale: 8, width, height, }, use_cache: false, }), cache: "no-store", // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) // Recommendation: handle errors if (res.status !== 200) { const content = await res.text() console.error(content) // This will activate the closest `error.js` Error Boundary throw new Error('Failed to fetch data') } const blob = await res.arrayBuffer() const contentType = res.headers.get('content-type') let assetUrl = `data:${contentType};base64,${Buffer.from(blob).toString('base64')}` // note: there is no "refiner" step yet for custom inference endpoint // you probably don't need it anyway, as you probably want to deploy an all-in-one model instead for perf reasons // update: right now it is not possible to use it from the Inference API either: // "Model type not found or pipeline not implemented" /* if (renderingEngine === "INFERENCE_API") { try { const refinerModelUrl = `https://api-inference.huggingface.co/models/${huggingFaceInferenceApiRefinerModel}` const res = await fetch(refinerModelUrl, { method: "POST", headers: { "Content-Type": "application/json", Authorization: `Bearer ${huggingFaceToken}`, }, body: JSON.stringify({ data: assetUrl, parameters: { prompt: positivePrompt, num_inference_steps: 25, guidance_scale: 8, width, height, }, use_cache: false, }), cache: "no-store", // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) // Recommendation: handle errors if (res.status !== 200) { const content = await res.text() console.error(content) // This will activate the closest `error.js` Error Boundary throw new Error('Failed to fetch data') } const blob = await res.arrayBuffer() const contentType = res.headers.get('content-type') assetUrl = `data:${contentType};base64,${Buffer.from(blob).toString('base64')}` } catch (err) { console.log(`Refiner step failed, but this is not a blocker. Error details: ${err}`) } } */ return { renderId: uuidv4(), status: "completed", assetUrl, alt: prompt, error: "", maskUrl: "", segments: [] } as RenderedScene } else { const res = await fetch(`${videochainApiUrl}/render`, { method: "POST", headers: { Accept: "application/json", "Content-Type": "application/json", Authorization: `Bearer ${videochainToken}`, }, body: JSON.stringify({ prompt, // negativePrompt, unused for now nbFrames: 1, nbSteps: 30, // 20 = fast, 30 = better, 50 = best actionnables: [], // ["text block"], segmentation: "disabled", // "firstframe", // one day we will remove this param, to make it automatic width, height, // no need to upscale right now as we generate tiny panels // maybe later we can provide an "export" button to PDF // unfortunately there are too many requests for upscaling, // the server is always down upscalingFactor: 1, // 2, // analyzing doesn't work yet, it seems.. analyze: false, // analyze: true, cache: "ignore" } as Partial), cache: 'no-store', // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) if (res.status !== 200) { throw new Error('Failed to fetch data') } const response = (await res.json()) as RenderedScene return response } } catch (err) { console.error(err) return defaulResult } } export async function getRender(renderId: string) { if (!renderId) { const error = `cannot call the rendering API without a renderId, aborting..` console.error(error) throw new Error(error) } let defaulResult: RenderedScene = { renderId: "", status: "pending", assetUrl: "", alt: "", maskUrl: "", error: "failed to fetch the data", segments: [] } try { if (renderingEngine === "REPLICATE") { if (!replicateToken) { throw new Error(`you need to configure your AUTH_REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`) } if (!replicateModel) { throw new Error(`you need to configure your RENDERING_REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`) } const res = await fetch(`https://api.replicate.com/v1/predictions/${renderId}`, { method: "GET", headers: { Authorization: `Token ${replicateToken}`, }, cache: 'no-store', // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) // Recommendation: handle errors if (res.status !== 200) { // This will activate the closest `error.js` Error Boundary throw new Error('Failed to fetch data') } const response = (await res.json()) as any return { renderId, status: response?.error ? "error" : response?.status === "succeeded" ? "completed" : "pending", assetUrl: `${response?.output || ""}`, alt: `${response?.input?.prompt || ""}`, error: `${response?.error || ""}`, maskUrl: "", segments: [] } as RenderedScene } else { // console.log(`calling GET ${apiUrl}/render with renderId: ${renderId}`) const res = await fetch(`${videochainApiUrl}/render/${renderId}`, { method: "GET", headers: { Accept: "application/json", "Content-Type": "application/json", Authorization: `Bearer ${videochainToken}`, }, cache: 'no-store', // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) if (res.status !== 200) { throw new Error('Failed to fetch data') } const response = (await res.json()) as RenderedScene return response } } catch (err) { console.error(err) defaulResult.status = "error" defaulResult.error = `${err}` return defaulResult } } export async function upscaleImage(image: string): Promise<{ assetUrl: string error: string }> { if (!image) { const error = `cannot call the rendering API without an image, aborting..` console.error(error) throw new Error(error) } let defaulResult = { assetUrl: "", error: "failed to fetch the data", } try { // console.log(`calling GET ${apiUrl}/render with renderId: ${renderId}`) const res = await fetch(`${videochainApiUrl}/upscale`, { method: "POST", headers: { Accept: "application/json", "Content-Type": "application/json", Authorization: `Bearer ${videochainToken}`, }, cache: 'no-store', body: JSON.stringify({ image, factor: 3 }) // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) if (res.status !== 200) { throw new Error('Failed to fetch data') } const response = (await res.json()) as { assetUrl: string error: string } return response } catch (err) { console.error(err) return defaulResult } }