|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from typing import Optional |
|
|
|
from einops import rearrange |
|
|
|
|
|
class InflatedConv3d(nn.Conv2d): |
|
def forward(self, x): |
|
video_length = x.shape[2] |
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w") |
|
x = super().forward(x) |
|
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) |
|
|
|
return x |
|
|
|
|
|
class InflatedGroupNorm(nn.GroupNorm): |
|
def forward(self, x): |
|
video_length = x.shape[2] |
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w") |
|
x = super().forward(x) |
|
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) |
|
|
|
return x |
|
|
|
|
|
class Upsample3D(nn.Module): |
|
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
self.name = name |
|
|
|
conv = None |
|
if use_conv_transpose: |
|
raise NotImplementedError |
|
elif use_conv: |
|
self.conv = InflatedConv3d( |
|
self.channels, self.out_channels, 3, padding=1) |
|
|
|
def forward(self, hidden_states, output_size=None): |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
if self.use_conv_transpose: |
|
raise NotImplementedError |
|
|
|
|
|
dtype = hidden_states.dtype |
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(torch.float32) |
|
|
|
|
|
if hidden_states.shape[0] >= 64: |
|
hidden_states = hidden_states.contiguous() |
|
|
|
|
|
|
|
if output_size is None: |
|
hidden_states = F.interpolate(hidden_states, scale_factor=[ |
|
1.0, 2.0, 2.0], mode="nearest") |
|
else: |
|
hidden_states = F.interpolate( |
|
hidden_states, size=output_size, mode="nearest") |
|
|
|
|
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = self.conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class Downsample3D(nn.Module): |
|
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = 2 |
|
self.name = name |
|
|
|
if use_conv: |
|
self.conv = InflatedConv3d( |
|
self.channels, self.out_channels, 3, stride=stride, padding=padding) |
|
else: |
|
raise NotImplementedError |
|
|
|
def forward(self, hidden_states): |
|
assert hidden_states.shape[1] == self.channels |
|
if self.use_conv and self.padding == 0: |
|
raise NotImplementedError |
|
|
|
assert hidden_states.shape[1] == self.channels |
|
hidden_states = self.conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class ResnetBlock3D(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout=0.0, |
|
temb_channels=512, |
|
groups=32, |
|
groups_out=None, |
|
pre_norm=True, |
|
eps=1e-6, |
|
non_linearity="swish", |
|
time_embedding_norm="default", |
|
output_scale_factor=1.0, |
|
use_in_shortcut=None, |
|
use_inflated_groupnorm=None, |
|
use_temporal_conv=False, |
|
use_temporal_mixer=False, |
|
): |
|
super().__init__() |
|
self.pre_norm = pre_norm |
|
self.pre_norm = True |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.time_embedding_norm = time_embedding_norm |
|
self.output_scale_factor = output_scale_factor |
|
self.use_temporal_mixer = use_temporal_mixer |
|
if use_temporal_mixer: |
|
self.temporal_mixer = AlphaBlender(0.3, "learned", None) |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
assert use_inflated_groupnorm != None |
|
if use_inflated_groupnorm: |
|
self.norm1 = InflatedGroupNorm( |
|
num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
else: |
|
self.norm1 = torch.nn.GroupNorm( |
|
num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
|
|
if use_temporal_conv: |
|
self.conv1 = nn.Conv3d(in_channels, out_channels, kernel_size=( |
|
3, 1, 1), stride=1, padding=(1, 0, 0)) |
|
else: |
|
self.conv1 = InflatedConv3d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
if temb_channels is not None: |
|
if self.time_embedding_norm == "default": |
|
time_emb_proj_out_channels = out_channels |
|
elif self.time_embedding_norm == "scale_shift": |
|
time_emb_proj_out_channels = out_channels * 2 |
|
else: |
|
raise ValueError( |
|
f"unknown time_embedding_norm : {self.time_embedding_norm} ") |
|
|
|
self.time_emb_proj = torch.nn.Linear( |
|
temb_channels, time_emb_proj_out_channels) |
|
else: |
|
self.time_emb_proj = None |
|
|
|
if use_inflated_groupnorm: |
|
self.norm2 = InflatedGroupNorm( |
|
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) |
|
else: |
|
self.norm2 = torch.nn.GroupNorm( |
|
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) |
|
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
if use_temporal_conv: |
|
self.conv2 = nn.Conv3d(in_channels, out_channels, kernel_size=( |
|
3, 1, 1), stride=1, padding=(1, 0, 0)) |
|
else: |
|
self.conv2 = InflatedConv3d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
if non_linearity == "swish": |
|
self.nonlinearity = lambda x: F.silu(x) |
|
elif non_linearity == "mish": |
|
self.nonlinearity = Mish() |
|
elif non_linearity == "silu": |
|
self.nonlinearity = nn.SiLU() |
|
|
|
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut |
|
|
|
self.conv_shortcut = None |
|
if self.use_in_shortcut: |
|
self.conv_shortcut = InflatedConv3d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, input_tensor, temb): |
|
if self.use_temporal_mixer: |
|
residual = input_tensor |
|
|
|
hidden_states = input_tensor |
|
|
|
hidden_states = self.norm1(hidden_states) |
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.conv1(hidden_states) |
|
|
|
if temb is not None: |
|
temb = self.time_emb_proj(self.nonlinearity(temb))[ |
|
:, :, None, None, None] |
|
|
|
if temb is not None and self.time_embedding_norm == "default": |
|
hidden_states = hidden_states + temb |
|
|
|
hidden_states = self.norm2(hidden_states) |
|
|
|
if temb is not None and self.time_embedding_norm == "scale_shift": |
|
scale, shift = torch.chunk(temb, 2, dim=1) |
|
hidden_states = hidden_states * (1 + scale) + shift |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
output_tensor = (input_tensor + hidden_states) / \ |
|
self.output_scale_factor |
|
|
|
if self.use_temporal_mixer: |
|
output_tensor = self.temporal_mixer(residual, output_tensor, None) |
|
|
|
return output_tensor |
|
|
|
|
|
class Mish(torch.nn.Module): |
|
def forward(self, hidden_states): |
|
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) |
|
|
|
|
|
class AlphaBlender(nn.Module): |
|
strategies = ["learned", "fixed", "learned_with_images"] |
|
|
|
def __init__( |
|
self, |
|
alpha: float, |
|
merge_strategy: str = "learned_with_images", |
|
rearrange_pattern: str = "b t -> (b t) 1 1", |
|
): |
|
super().__init__() |
|
self.merge_strategy = merge_strategy |
|
self.rearrange_pattern = rearrange_pattern |
|
self.scaler = 10. |
|
|
|
assert ( |
|
merge_strategy in self.strategies |
|
), f"merge_strategy needs to be in {self.strategies}" |
|
|
|
if self.merge_strategy == "fixed": |
|
self.register_buffer("mix_factor", torch.Tensor([alpha])) |
|
elif ( |
|
self.merge_strategy == "learned" |
|
or self.merge_strategy == "learned_with_images" |
|
): |
|
self.register_parameter( |
|
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) |
|
) |
|
else: |
|
raise ValueError(f"unknown merge strategy {self.merge_strategy}") |
|
|
|
def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor: |
|
if self.merge_strategy == "fixed": |
|
alpha = self.mix_factor |
|
elif self.merge_strategy == "learned": |
|
alpha = torch.sigmoid(self.mix_factor*self.scaler) |
|
elif self.merge_strategy == "learned_with_images": |
|
assert image_only_indicator is not None, "need image_only_indicator ..." |
|
alpha = torch.where( |
|
image_only_indicator.bool(), |
|
torch.ones(1, 1, device=image_only_indicator.device), |
|
rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1"), |
|
) |
|
alpha = rearrange(alpha, self.rearrange_pattern) |
|
else: |
|
raise NotImplementedError |
|
return alpha |
|
|
|
def forward( |
|
self, |
|
x_spatial: torch.Tensor, |
|
x_temporal: torch.Tensor, |
|
image_only_indicator: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
alpha = self.get_alpha(image_only_indicator) |
|
x = ( |
|
alpha.to(x_spatial.dtype) * x_spatial |
|
+ (1.0 - alpha).to(x_spatial.dtype) * x_temporal |
|
) |
|
return x |
|
|