File size: 21,946 Bytes
ebaff66 86b1a7e ebaff66 86b1a7e ebaff66 c811a04 86b1a7e ebaff66 86b1a7e ebaff66 325137b ebaff66 325137b ebaff66 325137b ebaff66 325137b ebaff66 325137b ebaff66 325137b ebaff66 86b1a7e 5940103 86b1a7e d504563 86b1a7e 325137b 86b1a7e 325137b 86b1a7e 325137b 86b1a7e a3498bb 86b1a7e a3498bb 86b1a7e ebaff66 325137b ebaff66 6a9d9a1 ebaff66 325137b ebaff66 325137b ebaff66 325137b ebaff66 325137b ebaff66 6a9d9a1 ebaff66 325137b ebaff66 86b1a7e 325137b 86b1a7e ebaff66 325137b ebaff66 325137b ebaff66 325137b ebaff66 325137b ebaff66 86b1a7e 325137b 86b1a7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
# Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Literal
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.embeddings import PixArtAlphaTextProjection
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormSingle
from diffusers.utils import BaseOutput, is_torch_version
from diffusers.utils import logging
from torch import nn
from xora.models.transformers.attention import BasicTransformerBlock
from xora.models.transformers.embeddings import get_3d_sincos_pos_embed
logger = logging.get_logger(__name__)
@dataclass
class Transformer3DModelOutput(BaseOutput):
"""
The output of [`Transformer2DModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
distributions for the unnoised latent pixels.
"""
sample: torch.FloatTensor
class Transformer3DModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
num_vector_embeds: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
adaptive_norm: str = "single_scale_shift", # 'single_scale_shift' or 'single_scale'
standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm'
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
attention_type: str = "default",
caption_channels: int = None,
project_to_2d_pos: bool = False,
use_tpu_flash_attention: bool = False, # if True uses the TPU attention offload ('flash attention')
qk_norm: Optional[str] = None,
positional_embedding_type: str = "absolute",
positional_embedding_theta: Optional[float] = None,
positional_embedding_max_pos: Optional[List[int]] = None,
timestep_scale_multiplier: Optional[float] = None,
):
super().__init__()
self.use_tpu_flash_attention = (
use_tpu_flash_attention # FIXME: push config down to the attention modules
)
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.inner_dim = inner_dim
self.project_to_2d_pos = project_to_2d_pos
self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True)
self.positional_embedding_type = positional_embedding_type
self.positional_embedding_theta = positional_embedding_theta
self.positional_embedding_max_pos = positional_embedding_max_pos
self.use_rope = self.positional_embedding_type == "rope"
self.timestep_scale_multiplier = timestep_scale_multiplier
if self.positional_embedding_type == "absolute":
embed_dim_3d = (
math.ceil((inner_dim / 2) * 3) if project_to_2d_pos else inner_dim
)
if self.project_to_2d_pos:
self.to_2d_proj = torch.nn.Linear(embed_dim_3d, inner_dim, bias=False)
self._init_to_2d_proj_weights(self.to_2d_proj)
elif self.positional_embedding_type == "rope":
if positional_embedding_theta is None:
raise ValueError(
"If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined"
)
if positional_embedding_max_pos is None:
raise ValueError(
"If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined"
)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
adaptive_norm=adaptive_norm,
standardization_norm=standardization_norm,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
use_tpu_flash_attention=use_tpu_flash_attention,
qk_norm=qk_norm,
use_rope=self.use_rope,
)
for d in range(num_layers)
]
)
# 4. Define output layers
self.out_channels = in_channels if out_channels is None else out_channels
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(
torch.randn(2, inner_dim) / inner_dim**0.5
)
self.proj_out = nn.Linear(inner_dim, self.out_channels)
self.adaln_single = AdaLayerNormSingle(
inner_dim, use_additional_conditions=False
)
if adaptive_norm == "single_scale":
self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)
self.caption_projection = None
if caption_channels is not None:
self.caption_projection = PixArtAlphaTextProjection(
in_features=caption_channels, hidden_size=inner_dim
)
self.gradient_checkpointing = False
def set_use_tpu_flash_attention(self):
r"""
Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU
attention kernel.
"""
logger.info("ENABLE TPU FLASH ATTENTION -> TRUE")
self.use_tpu_flash_attention = True
# push config down to the attention modules
for block in self.transformer_blocks:
block.set_use_tpu_flash_attention()
def initialize(self, embedding_std: float, mode: Literal["xora", "legacy"]):
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP:
nn.init.normal_(
self.adaln_single.emb.timestep_embedder.linear_1.weight, std=embedding_std
)
nn.init.normal_(
self.adaln_single.emb.timestep_embedder.linear_2.weight, std=embedding_std
)
nn.init.normal_(self.adaln_single.linear.weight, std=embedding_std)
if hasattr(self.adaln_single.emb, "resolution_embedder"):
nn.init.normal_(
self.adaln_single.emb.resolution_embedder.linear_1.weight,
std=embedding_std,
)
nn.init.normal_(
self.adaln_single.emb.resolution_embedder.linear_2.weight,
std=embedding_std,
)
if hasattr(self.adaln_single.emb, "aspect_ratio_embedder"):
nn.init.normal_(
self.adaln_single.emb.aspect_ratio_embedder.linear_1.weight,
std=embedding_std,
)
nn.init.normal_(
self.adaln_single.emb.aspect_ratio_embedder.linear_2.weight,
std=embedding_std,
)
# Initialize caption embedding MLP:
nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std)
nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std)
for block in self.transformer_blocks:
if mode.lower() == "xora":
nn.init.constant_(block.attn1.to_out[0].weight, 0)
nn.init.constant_(block.attn1.to_out[0].bias, 0)
nn.init.constant_(block.attn2.to_out[0].weight, 0)
nn.init.constant_(block.attn2.to_out[0].bias, 0)
if mode.lower() == "xora":
nn.init.constant_(block.ff.net[2].weight, 0)
nn.init.constant_(block.ff.net[2].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.proj_out.weight, 0)
nn.init.constant_(self.proj_out.bias, 0)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@staticmethod
def _init_to_2d_proj_weights(linear_layer):
input_features = linear_layer.weight.data.size(1)
output_features = linear_layer.weight.data.size(0)
# Start with a zero matrix
identity_like = torch.zeros((output_features, input_features))
# Fill the diagonal with 1's as much as possible
min_features = min(output_features, input_features)
identity_like[:min_features, :min_features] = torch.eye(min_features)
linear_layer.weight.data = identity_like.to(linear_layer.weight.data.device)
def get_fractional_positions(self, indices_grid):
fractional_positions = torch.stack(
[
indices_grid[:, i] / self.positional_embedding_max_pos[i]
for i in range(3)
],
dim=-1,
)
return fractional_positions
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
dtype = torch.float32 # We need full precision in the freqs_cis computation.
dim = self.inner_dim
theta = self.positional_embedding_theta
fractional_positions = self.get_fractional_positions(indices_grid)
start = 1
end = theta
device = fractional_positions.device
if spacing == "exp":
indices = theta ** (
torch.linspace(
math.log(start, theta),
math.log(end, theta),
dim // 6,
device=device,
dtype=dtype,
)
)
indices = indices.to(dtype=dtype)
elif spacing == "exp_2":
indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim)
indices = indices.to(dtype=dtype)
elif spacing == "linear":
indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype)
elif spacing == "sqrt":
indices = torch.linspace(
start**2, end**2, dim // 6, device=device, dtype=dtype
).sqrt()
indices = indices * math.pi / 2
if spacing == "exp_2":
freqs = (
(indices * fractional_positions.unsqueeze(-1))
.transpose(-1, -2)
.flatten(2)
)
else:
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
if dim % 6 != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
return cos_freq.to(self.dtype), sin_freq.to(self.dtype)
def forward(
self,
hidden_states: torch.Tensor,
indices_grid: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`):
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# for tpu attention offload 2d token masks are used. No need to transform.
if not self.use_tpu_flash_attention:
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (
1 - encoder_attention_mask.to(hidden_states.dtype)
) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
hidden_states = self.patchify_proj(hidden_states)
if self.timestep_scale_multiplier:
timestep = self.timestep_scale_multiplier * timestep
if self.positional_embedding_type == "absolute":
pos_embed_3d = self.get_absolute_pos_embed(indices_grid).to(
hidden_states.device
)
if self.project_to_2d_pos:
pos_embed = self.to_2d_proj(pos_embed_3d)
hidden_states = (hidden_states + pos_embed).to(hidden_states.dtype)
freqs_cis = None
elif self.positional_embedding_type == "rope":
freqs_cis = self.precompute_freqs_cis(indices_grid)
batch_size = hidden_states.shape[0]
timestep, embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_states.dtype,
)
# Second dimension is 1 or number of tokens (if timestep_per_token)
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
embedded_timestep = embedded_timestep.view(
batch_size, -1, embedded_timestep.shape[-1]
)
# 2. Blocks
if self.caption_projection is not None:
batch_size = hidden_states.shape[0]
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(
batch_size, -1, hidden_states.shape[-1]
)
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
freqs_cis,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
cross_attention_kwargs,
class_labels,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
freqs_cis=freqs_cis,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
)
# 3. Output
scale_shift_values = (
self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
)
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
if not return_dict:
return (hidden_states,)
return Transformer3DModelOutput(sample=hidden_states)
def get_absolute_pos_embed(self, grid):
grid_np = grid[0].cpu().numpy()
embed_dim_3d = (
math.ceil((self.inner_dim / 2) * 3)
if self.project_to_2d_pos
else self.inner_dim
)
pos_embed = get_3d_sincos_pos_embed( # (f h w)
embed_dim_3d,
grid_np,
h=int(max(grid_np[1]) + 1),
w=int(max(grid_np[2]) + 1),
f=int(max(grid_np[0] + 1)),
)
return torch.from_numpy(pos_embed).float().unsqueeze(0)
|