File size: 9,876 Bytes
ebaff66 b30014f ebaff66 86b1a7e ebaff66 86b1a7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import math
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Callable, Optional, Tuple, Union
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput
from torch import Tensor
from xora.utils.torch_utils import append_dims
def simple_diffusion_resolution_dependent_timestep_shift(
samples: Tensor,
timesteps: Tensor,
n: int = 32 * 32,
) -> Tensor:
if len(samples.shape) == 3:
_, m, _ = samples.shape
elif len(samples.shape) in [4, 5]:
m = math.prod(samples.shape[2:])
else:
raise ValueError("Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)")
snr = (timesteps / (1 - timesteps)) ** 2
shift_snr = torch.log(snr) + 2 * math.log(m / n)
shifted_timesteps = torch.sigmoid(0.5 * shift_snr)
return shifted_timesteps
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_normal_shift(
n_tokens: int,
min_tokens: int = 1024,
max_tokens: int = 4096,
min_shift: float = 0.95,
max_shift: float = 2.05,
) -> Callable[[float], float]:
m = (max_shift - min_shift) / (max_tokens - min_tokens)
b = min_shift - m * min_tokens
return m * n_tokens + b
def sd3_resolution_dependent_timestep_shift(samples: Tensor, timesteps: Tensor) -> Tensor:
"""
Shifts the timestep schedule as a function of the generated resolution.
In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images.
For more details: https://arxiv.org/pdf/2403.03206
In Flux they later propose a more dynamic resolution dependent timestep shift, see:
https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66
Args:
samples (Tensor): A batch of samples with shape (batch_size, channels, height, width) or
(batch_size, channels, frame, height, width).
timesteps (Tensor): A batch of timesteps with shape (batch_size,).
Returns:
Tensor: The shifted timesteps.
"""
if len(samples.shape) == 3:
_, m, _ = samples.shape
elif len(samples.shape) in [4, 5]:
m = math.prod(samples.shape[2:])
else:
raise ValueError("Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)")
shift = get_normal_shift(m)
return time_shift(shift, 1, timesteps)
class TimestepShifter(ABC):
@abstractmethod
def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
pass
@dataclass
class RectifiedFlowSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter):
order = 1
@register_to_config
def __init__(self, num_train_timesteps=1000, shifting: Optional[str] = None, base_resolution: int = 32**2):
super().__init__()
self.init_noise_sigma = 1.0
self.num_inference_steps = None
self.timesteps = self.sigmas = torch.linspace(1, 1 / num_train_timesteps, num_train_timesteps)
self.delta_timesteps = self.timesteps - torch.cat([self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])])
self.shifting = shifting
self.base_resolution = base_resolution
def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
if self.shifting == "SD3":
return sd3_resolution_dependent_timestep_shift(samples, timesteps)
elif self.shifting == "SimpleDiffusion":
return simple_diffusion_resolution_dependent_timestep_shift(samples, timesteps, self.base_resolution)
return timesteps
def set_timesteps(self, num_inference_steps: int, samples: Tensor, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`): The number of diffusion steps used when generating samples.
samples (`Tensor`): A batch of samples with shape.
device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved.
"""
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
timesteps = torch.linspace(1, 1 / num_inference_steps, num_inference_steps).to(device)
self.timesteps = self.shift_timesteps(samples, timesteps)
self.delta_timesteps = self.timesteps - torch.cat([self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])])
self.num_inference_steps = num_inference_steps
self.sigmas = self.timesteps
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
# pylint: disable=unused-argument
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def step(
self,
model_output: torch.FloatTensor,
timestep: torch.FloatTensor,
sample: torch.FloatTensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
variance_noise: Optional[torch.FloatTensor] = None,
return_dict: bool = True,
) -> Union[RectifiedFlowSchedulerOutput, Tuple]:
# pylint: disable=unused-argument
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
eta (`float`):
The weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`, defaults to `False`):
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
`use_clipped_model_output` has no effect.
generator (`torch.Generator`, *optional*):
A random number generator.
variance_noise (`torch.FloatTensor`):
Alternative to generating noise with `generator` by directly providing the noise for the variance
itself. Useful for methods such as [`CycleDiffusion`].
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned,
otherwise a tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if timestep.ndim == 0:
# Global timestep
current_index = (self.timesteps - timestep).abs().argmin()
dt = self.delta_timesteps.gather(0, current_index.unsqueeze(0))
else:
# Timestep per token
assert timestep.ndim == 2
current_index = (self.timesteps[:, None, None] - timestep[None]).abs().argmin(dim=0)
dt = self.delta_timesteps[current_index]
# Special treatment for zero timestep tokens - set dt to 0 so prev_sample = sample
dt = torch.where(timestep == 0.0, torch.zeros_like(dt), dt)[..., None]
prev_sample = sample - dt * model_output
if not return_dict:
return (prev_sample,)
return RectifiedFlowSchedulerOutput(prev_sample=prev_sample)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
sigmas = timesteps
sigmas = append_dims(sigmas, original_samples.ndim)
alphas = 1 - sigmas
noisy_samples = alphas * original_samples + sigmas * noise
return noisy_samples |