File size: 9,170 Bytes
86b1a7e e46ff5e bebbcd0 e46ff5e 4535a03 4bb89c5 86b1a7e 325137b e46ff5e 325137b e46ff5e 325137b e46ff5e 325137b e46ff5e 325137b 4535a03 325137b 4535a03 325137b 4535a03 325137b 4535a03 4bb89c5 4535a03 325137b 4535a03 325137b e46ff5e 325137b 4535a03 325137b 4535a03 325137b 4535a03 325137b 4535a03 e46ff5e 4535a03 325137b e46ff5e 325137b e46ff5e 4535a03 e46ff5e 4535a03 e46ff5e 4535a03 325137b 4535a03 325137b 4535a03 325137b 4535a03 e46ff5e 4bb89c5 e46ff5e 4535a03 e46ff5e 4535a03 e46ff5e 325137b e46ff5e 325137b 4535a03 325137b 4bb89c5 325137b 4bb89c5 4535a03 4bb89c5 325137b 4bb89c5 4535a03 4bb89c5 4535a03 e46ff5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import torch
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
from pathlib import Path
from transformers import T5EncoderModel, T5Tokenizer
import safetensors.torch
import json
import argparse
from xora.utils.conditioning_method import ConditioningMethod
import os
import numpy as np
import cv2
from PIL import Image
import random
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.cuda().to(torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.cuda()
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
def center_crop_and_resize(frame, target_height, target_width):
h, w, _ = frame.shape
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = w / h
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(h * aspect_ratio_target)
x_start = (w - new_width) // 2
frame_cropped = frame[:, x_start : x_start + new_width]
else:
new_height = int(w / aspect_ratio_target)
y_start = (h - new_height) // 2
frame_cropped = frame[y_start : y_start + new_height, :]
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
return frame_resized
def load_video_to_tensor_with_resize(video_path, target_height=512, target_width=768):
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = center_crop_and_resize(frame_rgb, target_height, target_width)
frames.append(frame_resized)
cap.release()
video_np = (np.array(frames) / 127.5) - 1.0
video_tensor = torch.tensor(video_np).permute(3, 0, 1, 2).float()
return video_tensor
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image)
frame_resized = center_crop_and_resize(image_np, target_height, target_width)
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
frame_tensor = (frame_tensor / 127.5) - 1.0
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
return frame_tensor.unsqueeze(0).unsqueeze(2)
def main():
parser = argparse.ArgumentParser(
description="Load models from separate directories and run the pipeline."
)
# Directories
parser.add_argument(
"--ckpt_dir",
type=str,
required=True,
help="Path to the directory containing unet, vae, and scheduler subdirectories",
)
parser.add_argument(
"--video_path", type=str, help="Path to the input video file (first frame used)"
)
parser.add_argument("--image_path", type=str, help="Path to the input image file")
parser.add_argument("--seed", type=int, default="171198")
# Pipeline parameters
parser.add_argument(
"--num_inference_steps", type=int, default=40, help="Number of inference steps"
)
parser.add_argument(
"--num_images_per_prompt",
type=int,
default=1,
help="Number of images per prompt",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=3,
help="Guidance scale for the pipeline",
)
parser.add_argument(
"--height", type=int, default=512, help="Height of the output video frames"
)
parser.add_argument(
"--width", type=int, default=768, help="Width of the output video frames"
)
parser.add_argument(
"--num_frames",
type=int,
default=121,
help="Number of frames to generate in the output video",
)
parser.add_argument(
"--frame_rate", type=int, default=25, help="Frame rate for the output video"
)
# Prompts
parser.add_argument(
"--prompt",
type=str,
default='A man wearing a black leather jacket and blue jeans is riding a Harley Davidson motorcycle down a paved road. The man has short brown hair and is wearing a black helmet. The motorcycle is a dark red color with a large front fairing. The road is surrounded by green grass and trees. There is a gas station on the left side of the road with a red and white sign that says "Oil" and "Diner".',
help="Text prompt to guide generation",
)
parser.add_argument(
"--negative_prompt",
type=str,
default="worst quality, inconsistent motion, blurry, jittery, distorted",
help="Negative prompt for undesired features",
)
args = parser.parse_args()
# Paths for the separate mode directories
ckpt_dir = Path(args.ckpt_dir)
unet_dir = ckpt_dir / "unet"
vae_dir = ckpt_dir / "vae"
scheduler_dir = ckpt_dir / "scheduler"
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
).to("cuda")
tokenizer = T5Tokenizer.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
)
# Use submodels for the pipeline
submodel_dict = {
"transformer": unet,
"patchifier": patchifier,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"vae": vae,
}
pipeline = VideoPixArtAlphaPipeline(**submodel_dict).to("cuda")
# Load media (video or image)
if args.video_path:
media_items = load_video_to_tensor_with_resize(
args.video_path, args.height, args.width
).unsqueeze(0)
elif args.image_path:
media_items = load_image_to_tensor_with_resize(
args.image_path, args.height, args.width
)
else:
raise ValueError("Either --video_path or --image_path must be provided.")
# Prepare input for the pipeline
sample = {
"prompt": args.prompt,
"prompt_attention_mask": None,
"negative_prompt": args.negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": media_items,
}
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
generator = torch.Generator(device="cuda").manual_seed(args.seed)
images = pipeline(
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.num_images_per_prompt,
guidance_scale=args.guidance_scale,
generator=generator,
output_type="pt",
callback_on_step_end=None,
height=args.height,
width=args.width,
num_frames=args.num_frames,
frame_rate=args.frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.FIRST_FRAME,
).images
# Save output video
def get_unique_filename(base, ext, dir=".", index_range=1000):
for i in range(index_range):
filename = os.path.join(dir, f"{base}_{i}{ext}")
if not os.path.exists(filename):
return filename
raise FileExistsError(
f"Could not find a unique filename after {index_range} attempts."
)
for i in range(images.shape[0]):
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
fps = args.frame_rate
height, width = video_np.shape[1:3]
output_filename = get_unique_filename(f"video_output_{i}", ".mp4", ".")
out = cv2.VideoWriter(
output_filename, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
if __name__ == "__main__":
main()
|