File size: 49,955 Bytes
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f52f00
 
 
 
 
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
4f52f00
 
 
 
 
 
 
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
325137b
 
 
cef1afc
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f52f00
 
 
 
 
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
325137b
 
 
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
325137b
 
 
 
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
 
 
 
cef1afc
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
325137b
 
 
cef1afc
 
 
 
325137b
 
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
 
 
 
 
 
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
325137b
 
 
cef1afc
 
 
325137b
 
 
cef1afc
 
325137b
 
 
cef1afc
 
325137b
 
 
cef1afc
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
 
 
 
cef1afc
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
325137b
 
 
 
 
 
cef1afc
 
 
325137b
 
 
cef1afc
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
 
 
cef1afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
import inspect
from importlib import import_module
from typing import Any, Dict, Optional, Tuple

import torch
import torch.nn.functional as F
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
from diffusers.models.attention import _chunked_feed_forward
from diffusers.models.attention_processor import (
    LoRAAttnAddedKVProcessor,
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    SpatialNorm,
)
from diffusers.models.lora import LoRACompatibleLinear
from diffusers.models.normalization import RMSNorm
from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import maybe_allow_in_graph
from einops import rearrange
from torch import nn

try:
    from torch_xla.experimental.custom_kernel import flash_attention
except ImportError:
    # workaround for automatic tests. Currently this function is manually patched
    # to the torch_xla lib on setup of container
    pass

# code adapted from  https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py

logger = logging.get_logger(__name__)


@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        qk_norm (`str`, *optional*, defaults to None):
            Set to 'layer_norm' or `rms_norm` to perform query and key normalization.
        adaptive_norm (`str`, *optional*, defaults to `"single_scale_shift"`):
            The type of adaptive norm to use. Can be `"single_scale_shift"`, `"single_scale"` or "none".
        standardization_norm (`str`, *optional*, defaults to `"layer_norm"`):
            The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,  # pylint: disable=unused-argument
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        adaptive_norm: str = "single_scale_shift",  # 'single_scale_shift', 'single_scale' or 'none'
        standardization_norm: str = "layer_norm",  # 'layer_norm' or 'rms_norm'
        norm_eps: float = 1e-5,
        qk_norm: Optional[str] = None,
        final_dropout: bool = False,
        attention_type: str = "default",  # pylint: disable=unused-argument
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
        use_tpu_flash_attention: bool = False,
        use_rope: bool = False,
    ):
        super().__init__()
        self.only_cross_attention = only_cross_attention
        self.use_tpu_flash_attention = use_tpu_flash_attention
        self.adaptive_norm = adaptive_norm

        assert standardization_norm in ["layer_norm", "rms_norm"]
        assert adaptive_norm in ["single_scale_shift", "single_scale", "none"]

        make_norm_layer = (
            nn.LayerNorm if standardization_norm == "layer_norm" else RMSNorm
        )

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.norm1 = make_norm_layer(
            dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
        )

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
            out_bias=attention_out_bias,
            use_tpu_flash_attention=use_tpu_flash_attention,
            qk_norm=qk_norm,
            use_rope=use_rope,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None or double_self_attention:
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=(
                    cross_attention_dim if not double_self_attention else None
                ),
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
                out_bias=attention_out_bias,
                use_tpu_flash_attention=use_tpu_flash_attention,
                qk_norm=qk_norm,
                use_rope=use_rope,
            )  # is self-attn if encoder_hidden_states is none

            if adaptive_norm == "none":
                self.attn2_norm = make_norm_layer(
                    dim, norm_eps, norm_elementwise_affine
                )
        else:
            self.attn2 = None
            self.attn2_norm = None

        self.norm2 = make_norm_layer(dim, norm_eps, norm_elementwise_affine)

        # 3. Feed-forward
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
            inner_dim=ff_inner_dim,
            bias=ff_bias,
        )

        # 5. Scale-shift for PixArt-Alpha.
        if adaptive_norm != "none":
            num_ada_params = 4 if adaptive_norm == "single_scale" else 6
            self.scale_shift_table = nn.Parameter(
                torch.randn(num_ada_params, dim) / dim**0.5
            )

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def set_use_tpu_flash_attention(self, device):
        r"""
        Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU
        attention kernel.
        """
        if device == "xla":
            self.use_tpu_flash_attention = True
            self.attn1.set_use_tpu_flash_attention(device)
            self.attn2.set_use_tpu_flash_attention(device)

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> torch.FloatTensor:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored."
                )

        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        norm_hidden_states = self.norm1(hidden_states)

        # Apply ada_norm_single
        if self.adaptive_norm in ["single_scale_shift", "single_scale"]:
            assert timestep.ndim == 3  # [batch, 1 or num_tokens, embedding_dim]
            num_ada_params = self.scale_shift_table.shape[0]
            ada_values = self.scale_shift_table[None, None] + timestep.reshape(
                batch_size, timestep.shape[1], num_ada_params, -1
            )
            if self.adaptive_norm == "single_scale_shift":
                shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                    ada_values.unbind(dim=2)
                )
                norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
            else:
                scale_msa, gate_msa, scale_mlp, gate_mlp = ada_values.unbind(dim=2)
                norm_hidden_states = norm_hidden_states * (1 + scale_msa)
        elif self.adaptive_norm == "none":
            scale_msa, gate_msa, scale_mlp, gate_mlp = None, None, None, None
        else:
            raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}")

        norm_hidden_states = norm_hidden_states.squeeze(
            1
        )  # TODO: Check if this is needed

        # 1. Prepare GLIGEN inputs
        cross_attention_kwargs = (
            cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        )

        attn_output = self.attn1(
            norm_hidden_states,
            freqs_cis=freqs_cis,
            encoder_hidden_states=(
                encoder_hidden_states if self.only_cross_attention else None
            ),
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
        if gate_msa is not None:
            attn_output = gate_msa * attn_output

        hidden_states = attn_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        # 3. Cross-Attention
        if self.attn2 is not None:
            if self.adaptive_norm == "none":
                attn_input = self.attn2_norm(hidden_states)
            else:
                attn_input = hidden_states
            attn_output = self.attn2(
                attn_input,
                freqs_cis=freqs_cis,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                **cross_attention_kwargs,
            )
            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm2(hidden_states)
        if self.adaptive_norm == "single_scale_shift":
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
        elif self.adaptive_norm == "single_scale":
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp)
        elif self.adaptive_norm == "none":
            pass
        else:
            raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}")

        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            ff_output = _chunked_feed_forward(
                self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size
            )
        else:
            ff_output = self.ff(norm_hidden_states)
        if gate_mlp is not None:
            ff_output = gate_mlp * ff_output

        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states


@maybe_allow_in_graph
class Attention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (`int`):
            The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
        heads (`int`,  *optional*, defaults to 8):
            The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64):
            The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
        upcast_attention (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the attention computation to `float32`.
        upcast_softmax (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the softmax computation to `float32`.
        cross_attention_norm (`str`, *optional*, defaults to `None`):
            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
        cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups to use for the group norm in the cross attention.
        added_kv_proj_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the added key and value projections. If `None`, no projection is used.
        norm_num_groups (`int`, *optional*, defaults to `None`):
            The number of groups to use for the group norm in the attention.
        spatial_norm_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the spatial normalization.
        out_bias (`bool`, *optional*, defaults to `True`):
            Set to `True` to use a bias in the output linear layer.
        scale_qk (`bool`, *optional*, defaults to `True`):
            Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
        qk_norm (`str`, *optional*, defaults to None):
            Set to 'layer_norm' or `rms_norm` to perform query and key normalization.
        only_cross_attention (`bool`, *optional*, defaults to `False`):
            Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
            `added_kv_proj_dim` is not `None`.
        eps (`float`, *optional*, defaults to 1e-5):
            An additional value added to the denominator in group normalization that is used for numerical stability.
        rescale_output_factor (`float`, *optional*, defaults to 1.0):
            A factor to rescale the output by dividing it with this value.
        residual_connection (`bool`, *optional*, defaults to `False`):
            Set to `True` to add the residual connection to the output.
        _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
            Set to `True` if the attention block is loaded from a deprecated state dict.
        processor (`AttnProcessor`, *optional*, defaults to `None`):
            The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
            `AttnProcessor` otherwise.
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias: bool = False,
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
        cross_attention_norm: Optional[str] = None,
        cross_attention_norm_num_groups: int = 32,
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
        spatial_norm_dim: Optional[int] = None,
        out_bias: bool = True,
        scale_qk: bool = True,
        qk_norm: Optional[str] = None,
        only_cross_attention: bool = False,
        eps: float = 1e-5,
        rescale_output_factor: float = 1.0,
        residual_connection: bool = False,
        _from_deprecated_attn_block: bool = False,
        processor: Optional["AttnProcessor"] = None,
        out_dim: int = None,
        use_tpu_flash_attention: bool = False,
        use_rope: bool = False,
    ):
        super().__init__()
        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
        self.query_dim = query_dim
        self.use_bias = bias
        self.is_cross_attention = cross_attention_dim is not None
        self.cross_attention_dim = (
            cross_attention_dim if cross_attention_dim is not None else query_dim
        )
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
        self.rescale_output_factor = rescale_output_factor
        self.residual_connection = residual_connection
        self.dropout = dropout
        self.fused_projections = False
        self.out_dim = out_dim if out_dim is not None else query_dim
        self.use_tpu_flash_attention = use_tpu_flash_attention
        self.use_rope = use_rope

        # we make use of this private variable to know whether this class is loaded
        # with an deprecated state dict so that we can convert it on the fly
        self._from_deprecated_attn_block = _from_deprecated_attn_block

        self.scale_qk = scale_qk
        self.scale = dim_head**-0.5 if self.scale_qk else 1.0

        if qk_norm is None:
            self.q_norm = nn.Identity()
            self.k_norm = nn.Identity()
        elif qk_norm == "rms_norm":
            self.q_norm = RMSNorm(dim_head * heads, eps=1e-5)
            self.k_norm = RMSNorm(dim_head * heads, eps=1e-5)
        elif qk_norm == "layer_norm":
            self.q_norm = nn.LayerNorm(dim_head * heads, eps=1e-5)
            self.k_norm = nn.LayerNorm(dim_head * heads, eps=1e-5)
        else:
            raise ValueError(f"Unsupported qk_norm method: {qk_norm}")

        self.heads = out_dim // dim_head if out_dim is not None else heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim
        self.only_cross_attention = only_cross_attention

        if self.added_kv_proj_dim is None and self.only_cross_attention:
            raise ValueError(
                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
            )

        if norm_num_groups is not None:
            self.group_norm = nn.GroupNorm(
                num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True
            )
        else:
            self.group_norm = None

        if spatial_norm_dim is not None:
            self.spatial_norm = SpatialNorm(
                f_channels=query_dim, zq_channels=spatial_norm_dim
            )
        else:
            self.spatial_norm = None

        if cross_attention_norm is None:
            self.norm_cross = None
        elif cross_attention_norm == "layer_norm":
            self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
        elif cross_attention_norm == "group_norm":
            if self.added_kv_proj_dim is not None:
                # The given `encoder_hidden_states` are initially of shape
                # (batch_size, seq_len, added_kv_proj_dim) before being projected
                # to (batch_size, seq_len, cross_attention_dim). The norm is applied
                # before the projection, so we need to use `added_kv_proj_dim` as
                # the number of channels for the group norm.
                norm_cross_num_channels = added_kv_proj_dim
            else:
                norm_cross_num_channels = self.cross_attention_dim

            self.norm_cross = nn.GroupNorm(
                num_channels=norm_cross_num_channels,
                num_groups=cross_attention_norm_num_groups,
                eps=1e-5,
                affine=True,
            )
        else:
            raise ValueError(
                f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
            )

        linear_cls = nn.Linear

        self.linear_cls = linear_cls
        self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)

        if not self.only_cross_attention:
            # only relevant for the `AddedKVProcessor` classes
            self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
            self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
        else:
            self.to_k = None
            self.to_v = None

        if self.added_kv_proj_dim is not None:
            self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
            self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)

        self.to_out = nn.ModuleList([])
        self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias))
        self.to_out.append(nn.Dropout(dropout))

        # set attention processor
        # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
        # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
        # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
        if processor is None:
            processor = AttnProcessor2_0()
        self.set_processor(processor)

    def set_use_tpu_flash_attention(self, device_type):
        r"""
        Function sets the flag in this object. The flag will enforce the usage of TPU attention kernel.
        """
        if device_type == "xla":
            self.use_tpu_flash_attention = True

    def set_processor(self, processor: "AttnProcessor") -> None:
        r"""
        Set the attention processor to use.

        Args:
            processor (`AttnProcessor`):
                The attention processor to use.
        """
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(
                f"You are removing possibly trained weights of {self.processor} with {processor}"
            )
            self._modules.pop("processor")

        self.processor = processor

    def get_processor(
        self, return_deprecated_lora: bool = False
    ) -> "AttentionProcessor":  # noqa: F821
        r"""
        Get the attention processor in use.

        Args:
            return_deprecated_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to return the deprecated LoRA attention processor.

        Returns:
            "AttentionProcessor": The attention processor in use.
        """
        if not return_deprecated_lora:
            return self.processor

        # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
        # serialization format for LoRA Attention Processors. It should be deleted once the integration
        # with PEFT is completed.
        is_lora_activated = {
            name: module.lora_layer is not None
            for name, module in self.named_modules()
            if hasattr(module, "lora_layer")
        }

        # 1. if no layer has a LoRA activated we can return the processor as usual
        if not any(is_lora_activated.values()):
            return self.processor

        # If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
        is_lora_activated.pop("add_k_proj", None)
        is_lora_activated.pop("add_v_proj", None)
        # 2. else it is not posssible that only some layers have LoRA activated
        if not all(is_lora_activated.values()):
            raise ValueError(
                f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
            )

        # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
        non_lora_processor_cls_name = self.processor.__class__.__name__
        lora_processor_cls = getattr(
            import_module(__name__), "LoRA" + non_lora_processor_cls_name
        )

        hidden_size = self.inner_dim

        # now create a LoRA attention processor from the LoRA layers
        if lora_processor_cls in [
            LoRAAttnProcessor,
            LoRAAttnProcessor2_0,
            LoRAXFormersAttnProcessor,
        ]:
            kwargs = {
                "cross_attention_dim": self.cross_attention_dim,
                "rank": self.to_q.lora_layer.rank,
                "network_alpha": self.to_q.lora_layer.network_alpha,
                "q_rank": self.to_q.lora_layer.rank,
                "q_hidden_size": self.to_q.lora_layer.out_features,
                "k_rank": self.to_k.lora_layer.rank,
                "k_hidden_size": self.to_k.lora_layer.out_features,
                "v_rank": self.to_v.lora_layer.rank,
                "v_hidden_size": self.to_v.lora_layer.out_features,
                "out_rank": self.to_out[0].lora_layer.rank,
                "out_hidden_size": self.to_out[0].lora_layer.out_features,
            }

            if hasattr(self.processor, "attention_op"):
                kwargs["attention_op"] = self.processor.attention_op

            lora_processor = lora_processor_cls(hidden_size, **kwargs)
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(
                self.to_out[0].lora_layer.state_dict()
            )
        elif lora_processor_cls == LoRAAttnAddedKVProcessor:
            lora_processor = lora_processor_cls(
                hidden_size,
                cross_attention_dim=self.add_k_proj.weight.shape[0],
                rank=self.to_q.lora_layer.rank,
                network_alpha=self.to_q.lora_layer.network_alpha,
            )
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(
                self.to_out[0].lora_layer.state_dict()
            )

            # only save if used
            if self.add_k_proj.lora_layer is not None:
                lora_processor.add_k_proj_lora.load_state_dict(
                    self.add_k_proj.lora_layer.state_dict()
                )
                lora_processor.add_v_proj_lora.load_state_dict(
                    self.add_v_proj.lora_layer.state_dict()
                )
            else:
                lora_processor.add_k_proj_lora = None
                lora_processor.add_v_proj_lora = None
        else:
            raise ValueError(f"{lora_processor_cls} does not exist.")

        return lora_processor

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        **cross_attention_kwargs,
    ) -> torch.Tensor:
        r"""
        The forward method of the `Attention` class.

        Args:
            hidden_states (`torch.Tensor`):
                The hidden states of the query.
            encoder_hidden_states (`torch.Tensor`, *optional*):
                The hidden states of the encoder.
            attention_mask (`torch.Tensor`, *optional*):
                The attention mask to use. If `None`, no mask is applied.
            **cross_attention_kwargs:
                Additional keyword arguments to pass along to the cross attention.

        Returns:
            `torch.Tensor`: The output of the attention layer.
        """
        # The `Attention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty

        attn_parameters = set(
            inspect.signature(self.processor.__call__).parameters.keys()
        )
        unused_kwargs = [
            k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters
        ]
        if len(unused_kwargs) > 0:
            logger.warning(
                f"cross_attention_kwargs {unused_kwargs} are not expected by"
                f" {self.processor.__class__.__name__} and will be ignored."
            )
        cross_attention_kwargs = {
            k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters
        }

        return self.processor(
            self,
            hidden_states,
            freqs_cis=freqs_cis,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

    def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
        is the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(
            batch_size // head_size, seq_len, dim * head_size
        )
        return tensor

    def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
        the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.
            out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
                reshaped to `[batch_size * heads, seq_len, dim // heads]`.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """

        head_size = self.heads
        if tensor.ndim == 3:
            batch_size, seq_len, dim = tensor.shape
            extra_dim = 1
        else:
            batch_size, extra_dim, seq_len, dim = tensor.shape
        tensor = tensor.reshape(
            batch_size, seq_len * extra_dim, head_size, dim // head_size
        )
        tensor = tensor.permute(0, 2, 1, 3)

        if out_dim == 3:
            tensor = tensor.reshape(
                batch_size * head_size, seq_len * extra_dim, dim // head_size
            )

        return tensor

    def get_attention_scores(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        attention_mask: torch.Tensor = None,
    ) -> torch.Tensor:
        r"""
        Compute the attention scores.

        Args:
            query (`torch.Tensor`): The query tensor.
            key (`torch.Tensor`): The key tensor.
            attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.

        Returns:
            `torch.Tensor`: The attention probabilities/scores.
        """
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0],
                query.shape[1],
                key.shape[1],
                dtype=query.dtype,
                device=query.device,
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

        attention_scores = torch.baddbmm(
            baddbmm_input,
            query,
            key.transpose(-1, -2),
            beta=beta,
            alpha=self.scale,
        )
        del baddbmm_input

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
        del attention_scores

        attention_probs = attention_probs.to(dtype)

        return attention_probs

    def prepare_attention_mask(
        self,
        attention_mask: torch.Tensor,
        target_length: int,
        batch_size: int,
        out_dim: int = 3,
    ) -> torch.Tensor:
        r"""
        Prepare the attention mask for the attention computation.

        Args:
            attention_mask (`torch.Tensor`):
                The attention mask to prepare.
            target_length (`int`):
                The target length of the attention mask. This is the length of the attention mask after padding.
            batch_size (`int`):
                The batch size, which is used to repeat the attention mask.
            out_dim (`int`, *optional*, defaults to `3`):
                The output dimension of the attention mask. Can be either `3` or `4`.

        Returns:
            `torch.Tensor`: The prepared attention mask.
        """
        head_size = self.heads
        if attention_mask is None:
            return attention_mask

        current_length: int = attention_mask.shape[-1]
        if current_length != target_length:
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (
                    attention_mask.shape[0],
                    attention_mask.shape[1],
                    target_length,
                )
                padding = torch.zeros(
                    padding_shape,
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )
                attention_mask = torch.cat([attention_mask, padding], dim=2)
            else:
                # TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
                #       we want to instead pad by (0, remaining_length), where remaining_length is:
                #       remaining_length: int = target_length - current_length
                # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)

        if out_dim == 3:
            if attention_mask.shape[0] < batch_size * head_size:
                attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        elif out_dim == 4:
            attention_mask = attention_mask.unsqueeze(1)
            attention_mask = attention_mask.repeat_interleave(head_size, dim=1)

        return attention_mask

    def norm_encoder_hidden_states(
        self, encoder_hidden_states: torch.Tensor
    ) -> torch.Tensor:
        r"""
        Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
        `Attention` class.

        Args:
            encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.

        Returns:
            `torch.Tensor`: The normalized encoder hidden states.
        """
        assert (
            self.norm_cross is not None
        ), "self.norm_cross must be defined to call self.norm_encoder_hidden_states"

        if isinstance(self.norm_cross, nn.LayerNorm):
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
        elif isinstance(self.norm_cross, nn.GroupNorm):
            # Group norm norms along the channels dimension and expects
            # input to be in the shape of (N, C, *). In this case, we want
            # to norm along the hidden dimension, so we need to move
            # (batch_size, sequence_length, hidden_size) ->
            # (batch_size, hidden_size, sequence_length)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
        else:
            assert False

        return encoder_hidden_states

    @staticmethod
    def apply_rotary_emb(
        input_tensor: torch.Tensor,
        freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        cos_freqs = freqs_cis[0]
        sin_freqs = freqs_cis[1]

        t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
        t1, t2 = t_dup.unbind(dim=-1)
        t_dup = torch.stack((-t2, t1), dim=-1)
        input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")

        out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs

        return out


class AttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(self):
        pass

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor],
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape
            if encoder_hidden_states is None
            else encoder_hidden_states.shape
        )

        if (attention_mask is not None) and (not attn.use_tpu_flash_attention):
            attention_mask = attn.prepare_attention_mask(
                attention_mask, sequence_length, batch_size
            )
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(
                batch_size, attn.heads, -1, attention_mask.shape[-1]
            )

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query = attn.to_q(hidden_states)
        query = attn.q_norm(query)

        if encoder_hidden_states is not None:
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(
                    encoder_hidden_states
                )
            key = attn.to_k(encoder_hidden_states)
            key = attn.k_norm(key)
        else:  # if no context provided do self-attention
            encoder_hidden_states = hidden_states
            key = attn.to_k(hidden_states)
            key = attn.k_norm(key)
            if attn.use_rope:
                key = attn.apply_rotary_emb(key, freqs_cis)
                query = attn.apply_rotary_emb(query, freqs_cis)

        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)

        if attn.use_tpu_flash_attention:  # use tpu attention offload 'flash attention'
            q_segment_indexes = None
            if (
                attention_mask is not None
            ):  # if mask is required need to tune both segmenIds fields
                # attention_mask = torch.squeeze(attention_mask).to(torch.float32)
                attention_mask = attention_mask.to(torch.float32)
                q_segment_indexes = torch.ones(
                    batch_size, query.shape[2], device=query.device, dtype=torch.float32
                )
                assert (
                    attention_mask.shape[1] == key.shape[2]
                ), f"ERROR: KEY SHAPE must be same as attention mask [{key.shape[2]}, {attention_mask.shape[1]}]"

            assert (
                query.shape[2] % 128 == 0
            ), f"ERROR: QUERY SHAPE must be divisible by 128 (TPU limitation) [{query.shape[2]}]"
            assert (
                key.shape[2] % 128 == 0
            ), f"ERROR: KEY SHAPE must be divisible by 128 (TPU limitation) [{key.shape[2]}]"

            # run the TPU kernel implemented in jax with pallas
            hidden_states = flash_attention(
                q=query,
                k=key,
                v=value,
                q_segment_ids=q_segment_indexes,
                kv_segment_ids=attention_mask,
                sm_scale=attn.scale,
            )
        else:
            hidden_states = F.scaled_dot_product_attention(
                query,
                key,
                value,
                attn_mask=attention_mask,
                dropout_p=0.0,
                is_causal=False,
            )

        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class AttnProcessor:
    r"""
    Default processor for performing attention-related computations.
    """

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape
            if encoder_hidden_states is None
            else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(
            attention_mask, sequence_length, batch_size
        )

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(
                encoder_hidden_states
            )

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        query = attn.q_norm(query)
        key = attn.k_norm(key)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class FeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
    """

    def __init__(
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
        final_dropout: bool = False,
        inner_dim=None,
        bias: bool = True,
    ):
        super().__init__()
        if inner_dim is None:
            inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim
        linear_cls = nn.Linear

        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim, bias=bias)
        elif activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim, bias=bias)
        elif activation_fn == "geglu-approximate":
            act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
        else:
            raise ValueError(f"Unsupported activation function: {activation_fn}")

        self.net = nn.ModuleList([])
        # project in
        self.net.append(act_fn)
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))

    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
        compatible_cls = (GEGLU, LoRACompatibleLinear)
        for module in self.net:
            if isinstance(module, compatible_cls):
                hidden_states = module(hidden_states, scale)
            else:
                hidden_states = module(hidden_states)
        return hidden_states