|
|
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
from einops import rearrange |
|
from torch import nn |
|
|
|
|
|
def get_timestep_embedding( |
|
timesteps: torch.Tensor, |
|
embedding_dim: int, |
|
flip_sin_to_cos: bool = False, |
|
downscale_freq_shift: float = 1, |
|
scale: float = 1, |
|
max_period: int = 10000, |
|
): |
|
""" |
|
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. |
|
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the |
|
embeddings. :return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" |
|
|
|
half_dim = embedding_dim // 2 |
|
exponent = -math.log(max_period) * torch.arange( |
|
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device |
|
) |
|
exponent = exponent / (half_dim - downscale_freq_shift) |
|
|
|
emb = torch.exp(exponent) |
|
emb = timesteps[:, None].float() * emb[None, :] |
|
|
|
|
|
emb = scale * emb |
|
|
|
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) |
|
|
|
|
|
if flip_sin_to_cos: |
|
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) |
|
|
|
|
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) |
|
return emb |
|
|
|
|
|
def get_3d_sincos_pos_embed(embed_dim, grid, w, h, f): |
|
""" |
|
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or |
|
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid = rearrange(grid, "c (f h w) -> c f h w", h=h, w=w) |
|
grid = rearrange(grid, "c f h w -> c h w f", h=h, w=w) |
|
grid = grid.reshape([3, 1, w, h, f]) |
|
pos_embed = get_3d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
pos_embed = pos_embed.transpose(1, 0, 2, 3) |
|
return rearrange(pos_embed, "h w f c -> (f h w) c") |
|
|
|
|
|
def get_3d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
if embed_dim % 3 != 0: |
|
raise ValueError("embed_dim must be divisible by 3") |
|
|
|
|
|
emb_f = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[0]) |
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[1]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[2]) |
|
|
|
emb = np.concatenate([emb_h, emb_w, emb_f], axis=-1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) |
|
""" |
|
if embed_dim % 2 != 0: |
|
raise ValueError("embed_dim must be divisible by 2") |
|
|
|
omega = np.arange(embed_dim // 2, dtype=np.float64) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000**omega |
|
|
|
pos_shape = pos.shape |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum("m,d->md", pos, omega) |
|
out = out.reshape([*pos_shape, -1])[0] |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=-1) |
|
return emb |
|
|
|
|
|
class SinusoidalPositionalEmbedding(nn.Module): |
|
"""Apply positional information to a sequence of embeddings. |
|
|
|
Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to |
|
them |
|
|
|
Args: |
|
embed_dim: (int): Dimension of the positional embedding. |
|
max_seq_length: Maximum sequence length to apply positional embeddings |
|
|
|
""" |
|
|
|
def __init__(self, embed_dim: int, max_seq_length: int = 32): |
|
super().__init__() |
|
position = torch.arange(max_seq_length).unsqueeze(1) |
|
div_term = torch.exp( |
|
torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim) |
|
) |
|
pe = torch.zeros(1, max_seq_length, embed_dim) |
|
pe[0, :, 0::2] = torch.sin(position * div_term) |
|
pe[0, :, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x): |
|
_, seq_length, _ = x.shape |
|
x = x + self.pe[:, :seq_length] |
|
return x |
|
|