daniel shalem
Feature: Add mixed precision support and direct bfloat16 support.
1940326
raw
history blame
22 kB
# Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Literal
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.embeddings import PixArtAlphaTextProjection
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormSingle
from diffusers.utils import BaseOutput, is_torch_version
from diffusers.utils import logging
from torch import nn
from xora.models.transformers.attention import BasicTransformerBlock
from xora.models.transformers.embeddings import get_3d_sincos_pos_embed
logger = logging.get_logger(__name__)
@dataclass
class Transformer3DModelOutput(BaseOutput):
"""
The output of [`Transformer2DModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
distributions for the unnoised latent pixels.
"""
sample: torch.FloatTensor
class Transformer3DModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
num_vector_embeds: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
adaptive_norm: str = "single_scale_shift", # 'single_scale_shift' or 'single_scale'
standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm'
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
attention_type: str = "default",
caption_channels: int = None,
project_to_2d_pos: bool = False,
use_tpu_flash_attention: bool = False, # if True uses the TPU attention offload ('flash attention')
qk_norm: Optional[str] = None,
positional_embedding_type: str = "absolute",
positional_embedding_theta: Optional[float] = None,
positional_embedding_max_pos: Optional[List[int]] = None,
timestep_scale_multiplier: Optional[float] = None,
):
super().__init__()
self.use_tpu_flash_attention = (
use_tpu_flash_attention # FIXME: push config down to the attention modules
)
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.inner_dim = inner_dim
self.project_to_2d_pos = project_to_2d_pos
self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True)
self.positional_embedding_type = positional_embedding_type
self.positional_embedding_theta = positional_embedding_theta
self.positional_embedding_max_pos = positional_embedding_max_pos
self.use_rope = self.positional_embedding_type == "rope"
self.timestep_scale_multiplier = timestep_scale_multiplier
if self.positional_embedding_type == "absolute":
embed_dim_3d = (
math.ceil((inner_dim / 2) * 3) if project_to_2d_pos else inner_dim
)
if self.project_to_2d_pos:
self.to_2d_proj = torch.nn.Linear(embed_dim_3d, inner_dim, bias=False)
self._init_to_2d_proj_weights(self.to_2d_proj)
elif self.positional_embedding_type == "rope":
if positional_embedding_theta is None:
raise ValueError(
"If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined"
)
if positional_embedding_max_pos is None:
raise ValueError(
"If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined"
)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
adaptive_norm=adaptive_norm,
standardization_norm=standardization_norm,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
use_tpu_flash_attention=use_tpu_flash_attention,
qk_norm=qk_norm,
use_rope=self.use_rope,
)
for d in range(num_layers)
]
)
# 4. Define output layers
self.out_channels = in_channels if out_channels is None else out_channels
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(
torch.randn(2, inner_dim) / inner_dim**0.5
)
self.proj_out = nn.Linear(inner_dim, self.out_channels)
self.adaln_single = AdaLayerNormSingle(
inner_dim, use_additional_conditions=False
)
if adaptive_norm == "single_scale":
self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)
self.caption_projection = None
if caption_channels is not None:
self.caption_projection = PixArtAlphaTextProjection(
in_features=caption_channels, hidden_size=inner_dim
)
self.gradient_checkpointing = False
def set_use_tpu_flash_attention(self):
r"""
Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU
attention kernel.
"""
logger.info(" ENABLE TPU FLASH ATTENTION -> TRUE")
# if using TPU -> configure components to use TPU flash attention
if self.device.type == "xla":
self.use_tpu_flash_attention = True
# push config down to the attention modules
for block in self.transformer_blocks:
block.set_use_tpu_flash_attention(self.device.type)
def initialize(self, embedding_std: float, mode: Literal["xora", "legacy"]):
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP:
nn.init.normal_(
self.adaln_single.emb.timestep_embedder.linear_1.weight, std=embedding_std
)
nn.init.normal_(
self.adaln_single.emb.timestep_embedder.linear_2.weight, std=embedding_std
)
nn.init.normal_(self.adaln_single.linear.weight, std=embedding_std)
if hasattr(self.adaln_single.emb, "resolution_embedder"):
nn.init.normal_(
self.adaln_single.emb.resolution_embedder.linear_1.weight,
std=embedding_std,
)
nn.init.normal_(
self.adaln_single.emb.resolution_embedder.linear_2.weight,
std=embedding_std,
)
if hasattr(self.adaln_single.emb, "aspect_ratio_embedder"):
nn.init.normal_(
self.adaln_single.emb.aspect_ratio_embedder.linear_1.weight,
std=embedding_std,
)
nn.init.normal_(
self.adaln_single.emb.aspect_ratio_embedder.linear_2.weight,
std=embedding_std,
)
# Initialize caption embedding MLP:
nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std)
nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std)
for block in self.transformer_blocks:
if mode.lower() == "xora":
nn.init.constant_(block.attn1.to_out[0].weight, 0)
nn.init.constant_(block.attn1.to_out[0].bias, 0)
nn.init.constant_(block.attn2.to_out[0].weight, 0)
nn.init.constant_(block.attn2.to_out[0].bias, 0)
if mode.lower() == "xora":
nn.init.constant_(block.ff.net[2].weight, 0)
nn.init.constant_(block.ff.net[2].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.proj_out.weight, 0)
nn.init.constant_(self.proj_out.bias, 0)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@staticmethod
def _init_to_2d_proj_weights(linear_layer):
input_features = linear_layer.weight.data.size(1)
output_features = linear_layer.weight.data.size(0)
# Start with a zero matrix
identity_like = torch.zeros((output_features, input_features))
# Fill the diagonal with 1's as much as possible
min_features = min(output_features, input_features)
identity_like[:min_features, :min_features] = torch.eye(min_features)
linear_layer.weight.data = identity_like.to(linear_layer.weight.data.device)
def get_fractional_positions(self, indices_grid):
fractional_positions = torch.stack(
[
indices_grid[:, i] / self.positional_embedding_max_pos[i]
for i in range(3)
],
dim=-1,
)
return fractional_positions
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
dtype = self.dtype
dim = self.inner_dim
theta = self.positional_embedding_theta
fractional_positions = self.get_fractional_positions(indices_grid)
start = 1
end = theta
device = fractional_positions.device
if spacing == "exp":
indices = theta ** (
torch.linspace(
math.log(start, theta),
math.log(end, theta),
dim // 6,
device=device,
dtype=dtype,
)
)
indices = indices.to(dtype=dtype)
elif spacing == "exp_2":
indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim)
indices = indices.to(dtype=dtype)
elif spacing == "linear":
indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype)
elif spacing == "sqrt":
indices = torch.linspace(
start**2, end**2, dim // 6, device=device, dtype=dtype
).sqrt()
indices = indices * math.pi / 2
if spacing == "exp_2":
freqs = (
(indices * fractional_positions.unsqueeze(-1))
.transpose(-1, -2)
.flatten(2)
)
else:
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
if dim % 6 != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
return cos_freq.to(dtype), sin_freq.to(dtype)
def forward(
self,
hidden_states: torch.Tensor,
indices_grid: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`):
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# for tpu attention offload 2d token masks are used. No need to transform.
if not self.use_tpu_flash_attention:
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (
1 - encoder_attention_mask.to(hidden_states.dtype)
) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
hidden_states = self.patchify_proj(hidden_states)
if self.timestep_scale_multiplier:
timestep = self.timestep_scale_multiplier * timestep
if self.positional_embedding_type == "absolute":
pos_embed_3d = self.get_absolute_pos_embed(indices_grid).to(
hidden_states.device
)
if self.project_to_2d_pos:
pos_embed = self.to_2d_proj(pos_embed_3d)
hidden_states = (hidden_states + pos_embed).to(hidden_states.dtype)
freqs_cis = None
elif self.positional_embedding_type == "rope":
freqs_cis = self.precompute_freqs_cis(indices_grid)
batch_size = hidden_states.shape[0]
timestep, embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_states.dtype,
)
# Second dimension is 1 or number of tokens (if timestep_per_token)
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
embedded_timestep = embedded_timestep.view(
batch_size, -1, embedded_timestep.shape[-1]
)
# 2. Blocks
if self.caption_projection is not None:
batch_size = hidden_states.shape[0]
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(
batch_size, -1, hidden_states.shape[-1]
)
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
freqs_cis,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
cross_attention_kwargs,
class_labels,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
freqs_cis=freqs_cis,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
)
# 3. Output
scale_shift_values = (
self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
)
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
if not return_dict:
return (hidden_states,)
return Transformer3DModelOutput(sample=hidden_states)
def get_absolute_pos_embed(self, grid):
grid_np = grid[0].cpu().numpy()
embed_dim_3d = (
math.ceil((self.inner_dim / 2) * 3)
if self.project_to_2d_pos
else self.inner_dim
)
pos_embed = get_3d_sincos_pos_embed( # (f h w)
embed_dim_3d,
grid_np,
h=int(max(grid_np[1]) + 1),
w=int(max(grid_np[2]) + 1),
f=int(max(grid_np[0] + 1)),
)
return torch.from_numpy(pos_embed).float().unsqueeze(0)