|
import torch |
|
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder |
|
from xora.models.transformers.transformer3d import Transformer3DModel |
|
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier |
|
from xora.schedulers.rf import RectifiedFlowScheduler |
|
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline |
|
from pathlib import Path |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
import safetensors.torch |
|
import json |
|
import argparse |
|
|
|
def load_vae(vae_dir): |
|
vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors" |
|
vae_config_path = vae_dir / "config.json" |
|
with open(vae_config_path, 'r') as f: |
|
vae_config = json.load(f) |
|
vae = CausalVideoAutoencoder.from_config(vae_config) |
|
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) |
|
vae.load_state_dict(vae_state_dict) |
|
return vae.cuda().to(torch.bfloat16) |
|
|
|
def load_unet(unet_dir): |
|
unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors" |
|
unet_config_path = unet_dir / "config.json" |
|
transformer_config = Transformer3DModel.load_config(unet_config_path) |
|
transformer = Transformer3DModel.from_config(transformer_config) |
|
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) |
|
transformer.load_state_dict(unet_state_dict, strict=True) |
|
return transformer.cuda() |
|
|
|
def load_scheduler(scheduler_dir): |
|
scheduler_config_path = scheduler_dir / "scheduler_config.json" |
|
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) |
|
return RectifiedFlowScheduler.from_config(scheduler_config) |
|
|
|
def main(): |
|
|
|
parser = argparse.ArgumentParser(description='Load models from separate directories') |
|
parser.add_argument('--separate_dir', type=str, required=True, help='Path to the directory containing unet, vae, and scheduler subdirectories') |
|
args = parser.parse_args() |
|
|
|
|
|
separate_dir = Path(args.separate_dir) |
|
unet_dir = separate_dir / 'unet' |
|
vae_dir = separate_dir / 'vae' |
|
scheduler_dir = separate_dir / 'scheduler' |
|
|
|
|
|
vae = load_vae(vae_dir) |
|
unet = load_unet(unet_dir) |
|
scheduler = load_scheduler(scheduler_dir) |
|
|
|
|
|
patchifier = SymmetricPatchifier(patch_size=1) |
|
|
|
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to("cuda") |
|
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer") |
|
|
|
|
|
submodel_dict = { |
|
"transformer": unet, |
|
"patchifier": patchifier, |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"vae": vae, |
|
} |
|
|
|
pipeline = VideoPixArtAlphaPipeline(**submodel_dict).to("cuda") |
|
|
|
|
|
num_inference_steps = 20 |
|
num_images_per_prompt = 2 |
|
guidance_scale = 3 |
|
height = 512 |
|
width = 768 |
|
num_frames = 57 |
|
frame_rate = 25 |
|
sample = { |
|
"prompt": "A middle-aged man with glasses and a salt-and-pepper beard is driving a car and talking, gesturing with his right hand. " |
|
"The man is wearing a dark blue zip-up jacket and a light blue collared shirt. He is sitting in the driver's seat of a car with a black interior. The car is moving on a road with trees and bushes on either side. The man has a serious expression on his face and is looking straight ahead.", |
|
'prompt_attention_mask': None, |
|
'negative_prompt': "Ugly deformed", |
|
'negative_prompt_attention_mask': None |
|
} |
|
|
|
|
|
images = pipeline( |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_images_per_prompt, |
|
guidance_scale=guidance_scale, |
|
generator=None, |
|
output_type="pt", |
|
callback_on_step_end=None, |
|
height=height, |
|
width=width, |
|
num_frames=num_frames, |
|
frame_rate=frame_rate, |
|
**sample, |
|
is_video=True, |
|
vae_per_channel_normalize=True, |
|
).images |
|
|
|
print("Generated images (video frames).") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|