|
|
|
import html |
|
import inspect |
|
import math |
|
import re |
|
import urllib.parse as ul |
|
from typing import Callable, Dict, List, Optional, Tuple, Union |
|
from abc import ABC, abstractmethod |
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.models import AutoencoderKL |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from diffusers.schedulers import DPMSolverMultistepScheduler |
|
from diffusers.utils import ( |
|
BACKENDS_MAPPING, |
|
deprecate, |
|
is_bs4_available, |
|
is_ftfy_available, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from einops import rearrange |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
from xora.models.transformers.transformer3d import Transformer3DModel |
|
from xora.models.transformers.symmetric_patchifier import Patchifier |
|
from xora.models.autoencoders.vae_encode import get_vae_size_scale_factor, vae_decode, vae_encode |
|
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder |
|
from xora.schedulers.rf import TimestepShifter |
|
from xora.utils.conditioning_method import ConditioningMethod |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
if is_bs4_available(): |
|
from bs4 import BeautifulSoup |
|
|
|
if is_ftfy_available(): |
|
import ftfy |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import PixArtAlphaPipeline |
|
|
|
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-XL-2-512x512" too. |
|
>>> pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16) |
|
>>> # Enable memory optimizations. |
|
>>> pipe.enable_model_cpu_offload() |
|
|
|
>>> prompt = "A small cactus with a happy face in the Sahara desert." |
|
>>> image = pipe(prompt).images[0] |
|
``` |
|
""" |
|
|
|
ASPECT_RATIO_1024_BIN = { |
|
"0.25": [512.0, 2048.0], |
|
"0.28": [512.0, 1856.0], |
|
"0.32": [576.0, 1792.0], |
|
"0.33": [576.0, 1728.0], |
|
"0.35": [576.0, 1664.0], |
|
"0.4": [640.0, 1600.0], |
|
"0.42": [640.0, 1536.0], |
|
"0.48": [704.0, 1472.0], |
|
"0.5": [704.0, 1408.0], |
|
"0.52": [704.0, 1344.0], |
|
"0.57": [768.0, 1344.0], |
|
"0.6": [768.0, 1280.0], |
|
"0.68": [832.0, 1216.0], |
|
"0.72": [832.0, 1152.0], |
|
"0.78": [896.0, 1152.0], |
|
"0.82": [896.0, 1088.0], |
|
"0.88": [960.0, 1088.0], |
|
"0.94": [960.0, 1024.0], |
|
"1.0": [1024.0, 1024.0], |
|
"1.07": [1024.0, 960.0], |
|
"1.13": [1088.0, 960.0], |
|
"1.21": [1088.0, 896.0], |
|
"1.29": [1152.0, 896.0], |
|
"1.38": [1152.0, 832.0], |
|
"1.46": [1216.0, 832.0], |
|
"1.67": [1280.0, 768.0], |
|
"1.75": [1344.0, 768.0], |
|
"2.0": [1408.0, 704.0], |
|
"2.09": [1472.0, 704.0], |
|
"2.4": [1536.0, 640.0], |
|
"2.5": [1600.0, 640.0], |
|
"3.0": [1728.0, 576.0], |
|
"4.0": [2048.0, 512.0], |
|
} |
|
|
|
ASPECT_RATIO_512_BIN = { |
|
"0.25": [256.0, 1024.0], |
|
"0.28": [256.0, 928.0], |
|
"0.32": [288.0, 896.0], |
|
"0.33": [288.0, 864.0], |
|
"0.35": [288.0, 832.0], |
|
"0.4": [320.0, 800.0], |
|
"0.42": [320.0, 768.0], |
|
"0.48": [352.0, 736.0], |
|
"0.5": [352.0, 704.0], |
|
"0.52": [352.0, 672.0], |
|
"0.57": [384.0, 672.0], |
|
"0.6": [384.0, 640.0], |
|
"0.68": [416.0, 608.0], |
|
"0.72": [416.0, 576.0], |
|
"0.78": [448.0, 576.0], |
|
"0.82": [448.0, 544.0], |
|
"0.88": [480.0, 544.0], |
|
"0.94": [480.0, 512.0], |
|
"1.0": [512.0, 512.0], |
|
"1.07": [512.0, 480.0], |
|
"1.13": [544.0, 480.0], |
|
"1.21": [544.0, 448.0], |
|
"1.29": [576.0, 448.0], |
|
"1.38": [576.0, 416.0], |
|
"1.46": [608.0, 416.0], |
|
"1.67": [640.0, 384.0], |
|
"1.75": [672.0, 384.0], |
|
"2.0": [704.0, 352.0], |
|
"2.09": [736.0, 352.0], |
|
"2.4": [768.0, 320.0], |
|
"2.5": [800.0, 320.0], |
|
"3.0": [864.0, 288.0], |
|
"4.0": [1024.0, 256.0], |
|
} |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, |
|
`timesteps` must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default |
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` |
|
must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class VideoPixArtAlphaPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using PixArt-Alpha. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`T5EncoderModel`]): |
|
Frozen text-encoder. PixArt-Alpha uses |
|
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the |
|
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. |
|
tokenizer (`T5Tokenizer`): |
|
Tokenizer of class |
|
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). |
|
transformer ([`Transformer2DModel`]): |
|
A text conditioned `Transformer2DModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
""" |
|
|
|
bad_punct_regex = re.compile( |
|
r"[" |
|
+ "#®•©™&@·º½¾¿¡§~" |
|
+ r"\)" |
|
+ r"\(" |
|
+ r"\]" |
|
+ r"\[" |
|
+ r"\}" |
|
+ r"\{" |
|
+ r"\|" |
|
+ "\\" |
|
+ r"\/" |
|
+ r"\*" |
|
+ r"]{1,}" |
|
) |
|
|
|
_optional_components = ["tokenizer", "text_encoder"] |
|
model_cpu_offload_seq = "text_encoder->transformer->vae" |
|
|
|
def __init__( |
|
self, |
|
tokenizer: T5Tokenizer, |
|
text_encoder: T5EncoderModel, |
|
vae: AutoencoderKL, |
|
transformer: Transformer3DModel, |
|
scheduler: DPMSolverMultistepScheduler, |
|
patchifier: Patchifier, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
vae=vae, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
patchifier=patchifier, |
|
) |
|
|
|
self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(self.vae) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
|
|
def mask_text_embeddings(self, emb, mask): |
|
if emb.shape[0] == 1: |
|
keep_index = mask.sum().item() |
|
return emb[:, :, :keep_index, :], keep_index |
|
else: |
|
masked_feature = emb * mask[:, None, :, None] |
|
return masked_feature, emb.shape[2] |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: str = "", |
|
num_images_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
prompt_attention_mask: Optional[torch.FloatTensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, |
|
clean_caption: bool = False, |
|
**kwargs, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` |
|
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For |
|
PixArt-Alpha, this should be "". |
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): |
|
whether to use classifier free guidance or not |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
number of images that should be generated per prompt |
|
device: (`torch.device`, *optional*): |
|
torch device to place the resulting embeddings on |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" |
|
string. |
|
clean_caption (bool, defaults to `False`): |
|
If `True`, the function will preprocess and clean the provided caption before encoding. |
|
""" |
|
|
|
if "mask_feature" in kwargs: |
|
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." |
|
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
if device is None: |
|
device = self._execution_device |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
|
|
max_length = 128 |
|
|
|
if prompt_embeds is None: |
|
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_attention_mask = text_inputs.attention_mask |
|
prompt_attention_mask = prompt_attention_mask.to(device) |
|
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
if self.text_encoder is not None: |
|
dtype = self.text_encoder.dtype |
|
elif self.transformer is not None: |
|
dtype = self.transformer.dtype |
|
else: |
|
dtype = None |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt) |
|
prompt_attention_mask = prompt_attention_mask.view(bs_embed * num_images_per_prompt, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens = [negative_prompt] * batch_size |
|
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) |
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_attention_mask=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
negative_prompt_attention_mask = uncond_input.attention_mask |
|
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(1, num_images_per_prompt) |
|
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed * num_images_per_prompt, -1) |
|
else: |
|
negative_prompt_embeds = None |
|
negative_prompt_attention_mask = None |
|
|
|
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
prompt_attention_mask=None, |
|
negative_prompt_attention_mask=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and prompt_attention_mask is None: |
|
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") |
|
|
|
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: |
|
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: |
|
raise ValueError( |
|
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" |
|
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" |
|
f" {negative_prompt_attention_mask.shape}." |
|
) |
|
|
|
|
|
def _text_preprocessing(self, text, clean_caption=False): |
|
if clean_caption and not is_bs4_available(): |
|
logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) |
|
logger.warn("Setting `clean_caption` to False...") |
|
clean_caption = False |
|
|
|
if clean_caption and not is_ftfy_available(): |
|
logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) |
|
logger.warn("Setting `clean_caption` to False...") |
|
clean_caption = False |
|
|
|
if not isinstance(text, (tuple, list)): |
|
text = [text] |
|
|
|
def process(text: str): |
|
if clean_caption: |
|
text = self._clean_caption(text) |
|
text = self._clean_caption(text) |
|
else: |
|
text = text.lower().strip() |
|
return text |
|
|
|
return [process(t) for t in text] |
|
|
|
|
|
def _clean_caption(self, caption): |
|
caption = str(caption) |
|
caption = ul.unquote_plus(caption) |
|
caption = caption.strip().lower() |
|
caption = re.sub("<person>", "person", caption) |
|
|
|
caption = re.sub( |
|
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", |
|
"", |
|
caption, |
|
) |
|
caption = re.sub( |
|
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", |
|
"", |
|
caption, |
|
) |
|
|
|
caption = BeautifulSoup(caption, features="html.parser").text |
|
|
|
|
|
caption = re.sub(r"@[\w\d]+\b", "", caption) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) |
|
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) |
|
caption = re.sub(r"[\u3200-\u32ff]+", "", caption) |
|
caption = re.sub(r"[\u3300-\u33ff]+", "", caption) |
|
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) |
|
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) |
|
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) |
|
|
|
|
|
|
|
caption = re.sub( |
|
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", |
|
"-", |
|
caption, |
|
) |
|
|
|
|
|
caption = re.sub(r"[`´«»“”¨]", '"', caption) |
|
caption = re.sub(r"[‘’]", "'", caption) |
|
|
|
|
|
caption = re.sub(r""?", "", caption) |
|
|
|
caption = re.sub(r"&", "", caption) |
|
|
|
|
|
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) |
|
|
|
|
|
caption = re.sub(r"\d:\d\d\s+$", "", caption) |
|
|
|
|
|
caption = re.sub(r"\\n", " ", caption) |
|
|
|
|
|
caption = re.sub(r"#\d{1,3}\b", "", caption) |
|
|
|
caption = re.sub(r"#\d{5,}\b", "", caption) |
|
|
|
caption = re.sub(r"\b\d{6,}\b", "", caption) |
|
|
|
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) |
|
|
|
|
|
caption = re.sub(r"[\"\']{2,}", r'"', caption) |
|
caption = re.sub(r"[\.]{2,}", r" ", caption) |
|
|
|
caption = re.sub(self.bad_punct_regex, r" ", caption) |
|
caption = re.sub(r"\s+\.\s+", r" ", caption) |
|
|
|
|
|
regex2 = re.compile(r"(?:\-|\_)") |
|
if len(re.findall(regex2, caption)) > 3: |
|
caption = re.sub(regex2, " ", caption) |
|
|
|
caption = ftfy.fix_text(caption) |
|
caption = html.unescape(html.unescape(caption)) |
|
|
|
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) |
|
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) |
|
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) |
|
|
|
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) |
|
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) |
|
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) |
|
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) |
|
caption = re.sub(r"\bpage\s+\d+\b", "", caption) |
|
|
|
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) |
|
|
|
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) |
|
|
|
caption = re.sub(r"\b\s+\:\s+", r": ", caption) |
|
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) |
|
caption = re.sub(r"\s+", " ", caption) |
|
|
|
caption.strip() |
|
|
|
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) |
|
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) |
|
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) |
|
caption = re.sub(r"^\.\S+$", "", caption) |
|
|
|
return caption.strip() |
|
|
|
|
|
def prepare_latents( |
|
self, batch_size, num_latent_channels, num_patches, dtype, device, generator, latents=None, latents_mask=None |
|
): |
|
shape = ( |
|
batch_size, |
|
num_patches // math.prod(self.patchifier.patch_size), |
|
num_latent_channels, |
|
) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
elif latents_mask is not None: |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = latents * latents_mask[..., None] + noise * (1 - latents_mask[..., None]) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@staticmethod |
|
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: |
|
"""Returns binned height and width.""" |
|
ar = float(height / width) |
|
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) |
|
default_hw = ratios[closest_ratio] |
|
return int(default_hw[0]), int(default_hw[1]) |
|
|
|
@staticmethod |
|
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: |
|
n_frames, orig_height, orig_width = samples.shape[-3:] |
|
|
|
|
|
if orig_height != new_height or orig_width != new_width: |
|
ratio = max(new_height / orig_height, new_width / orig_width) |
|
resized_width = int(orig_width * ratio) |
|
resized_height = int(orig_height * ratio) |
|
|
|
|
|
samples = rearrange(samples, "b c n h w -> (b n) c h w") |
|
samples = F.interpolate(samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False) |
|
samples = rearrange(samples, "(b n) c h w -> b c n h w", n=n_frames) |
|
|
|
|
|
start_x = (resized_width - new_width) // 2 |
|
end_x = start_x + new_width |
|
start_y = (resized_height - new_height) // 2 |
|
end_y = start_y + new_height |
|
samples = samples[..., start_y:end_y, start_x:end_x] |
|
|
|
return samples |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
height: int, |
|
width: int, |
|
num_frames: int, |
|
frame_rate: float, |
|
prompt: Union[str, List[str]] = None, |
|
negative_prompt: str = "", |
|
num_inference_steps: int = 20, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 4.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
prompt_attention_mask: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
clean_caption: bool = True, |
|
media_items: Optional[torch.FloatTensor] = None, |
|
**kwargs, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` |
|
timesteps are used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 4.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
The width in pixels of the generated image. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not |
|
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. |
|
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): |
|
Pre-generated attention mask for negative text embeddings. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
clean_caption (`bool`, *optional*, defaults to `True`): |
|
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to |
|
be installed. If the dependencies are not installed, the embeddings will be created from the raw |
|
prompt. |
|
use_resolution_binning (`bool` defaults to `True`): |
|
If set to `True`, the requested height and width are first mapped to the closest resolutions using |
|
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to |
|
the requested resolution. Useful for generating non-square images. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images |
|
""" |
|
if "mask_feature" in kwargs: |
|
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." |
|
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
is_video = kwargs.get("is_video", False) |
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_attention_mask, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
( |
|
prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_embeds, |
|
negative_prompt_attention_mask, |
|
) = self.encode_prompt( |
|
prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
prompt_attention_mask=prompt_attention_mask, |
|
negative_prompt_attention_mask=negative_prompt_attention_mask, |
|
clean_caption=clean_caption, |
|
) |
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) |
|
|
|
|
|
self.video_scale_factor = self.video_scale_factor if is_video else 1 |
|
conditioning_method = kwargs.get("conditioning_method", None) |
|
vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", False) |
|
init_latents, conditioning_mask = self.prepare_conditioning( |
|
media_items, num_frames, height, width, conditioning_method, vae_per_channel_normalize |
|
) |
|
|
|
|
|
latent_height = height // self.vae_scale_factor |
|
latent_width = width // self.vae_scale_factor |
|
latent_num_frames = num_frames // self.video_scale_factor |
|
if isinstance(self.vae, CausalVideoAutoencoder) and is_video: |
|
latent_num_frames += 1 |
|
latent_frame_rate = frame_rate / self.video_scale_factor |
|
num_latent_patches = latent_height * latent_width * latent_num_frames |
|
latents = self.prepare_latents( |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_latent_channels=self.transformer.config.in_channels, |
|
num_patches=num_latent_patches, |
|
dtype=prompt_embeds.dtype, |
|
device=device, |
|
generator=generator, |
|
latents=init_latents, |
|
latents_mask=conditioning_mask, |
|
) |
|
if conditioning_mask is not None and is_video: |
|
assert num_images_per_prompt == 1 |
|
conditioning_mask = torch.cat([conditioning_mask] * 2) if do_classifier_free_guidance else conditioning_mask |
|
|
|
|
|
retrieve_timesteps_kwargs = {} |
|
if isinstance(self.scheduler, TimestepShifter): |
|
retrieve_timesteps_kwargs["samples"] = latents |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, num_inference_steps, device, timesteps, **retrieve_timesteps_kwargs |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
latent_frame_rates = ( |
|
torch.ones(latent_model_input.shape[0], 1, device=latent_model_input.device) * latent_frame_rate |
|
) |
|
|
|
current_timestep = t |
|
if not torch.is_tensor(current_timestep): |
|
|
|
|
|
is_mps = latent_model_input.device.type == "mps" |
|
if isinstance(current_timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) |
|
elif len(current_timestep.shape) == 0: |
|
current_timestep = current_timestep[None].to(latent_model_input.device) |
|
|
|
current_timestep = current_timestep.expand(latent_model_input.shape[0]).unsqueeze(-1) |
|
scale_grid = ( |
|
(1 / latent_frame_rates, self.vae_scale_factor, self.vae_scale_factor) |
|
if self.transformer.use_rope |
|
else None |
|
) |
|
indices_grid = self.patchifier.get_grid( |
|
orig_num_frames=latent_num_frames, |
|
orig_height=latent_height, |
|
orig_width=latent_width, |
|
batch_size=latent_model_input.shape[0], |
|
scale_grid=scale_grid, |
|
device=latents.device, |
|
) |
|
|
|
if conditioning_mask is not None: |
|
current_timestep = current_timestep * (1 - conditioning_mask) |
|
|
|
|
|
noise_pred = self.transformer( |
|
latent_model_input.to(self.transformer.dtype), |
|
indices_grid, |
|
encoder_hidden_states=prompt_embeds.to(self.transformer.dtype), |
|
encoder_attention_mask=prompt_attention_mask, |
|
timestep=current_timestep, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
current_timestep, _ = current_timestep.chunk(2) |
|
|
|
|
|
if self.transformer.config.out_channels // 2 == self.transformer.config.in_channels: |
|
noise_pred = noise_pred.chunk(2, dim=1)[0] |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, |
|
t if current_timestep is None else current_timestep, |
|
latents, |
|
**extra_step_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if callback_on_step_end is not None: |
|
callback_on_step_end(self, i, t, {}) |
|
|
|
latents = self.patchifier.unpatchify( |
|
latents=latents, |
|
output_height=latent_height, |
|
output_width=latent_width, |
|
output_num_frames=latent_num_frames, |
|
out_channels=self.transformer.in_channels // math.prod(self.patchifier.patch_size), |
|
) |
|
if output_type != "latent": |
|
image = vae_decode( |
|
latents, self.vae, is_video, vae_per_channel_normalize=kwargs["vae_per_channel_normalize"] |
|
) |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
else: |
|
image = latents |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|
|
def prepare_conditioning( |
|
self, |
|
media_items: torch.Tensor, |
|
num_frames: int, |
|
height: int, |
|
width: int, |
|
method: ConditioningMethod = ConditioningMethod.UNCONDITIONAL, |
|
vae_per_channel_normalize: bool = False, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Prepare the conditioning data for the video generation. If an input media item is provided, encode it |
|
and set the conditioning_mask to indicate which tokens to condition on. Input media item should have |
|
the same height and width as the generated video. |
|
|
|
Args: |
|
media_items (torch.Tensor): media items to condition on (images or videos) |
|
num_frames (int): number of frames to generate |
|
height (int): height of the generated video |
|
width (int): width of the generated video |
|
method (ConditioningMethod, optional): conditioning method to use. Defaults to ConditioningMethod.UNCONDITIONAL. |
|
vae_per_channel_normalize (bool, optional): whether to normalize the input to the VAE per channel. Defaults to False. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: the conditioning latents and the conditioning mask |
|
""" |
|
if media_items is None or method == ConditioningMethod.UNCONDITIONAL: |
|
return None, None |
|
|
|
assert media_items.ndim == 5 |
|
assert height == media_items.shape[-2] and width == media_items.shape[-1] |
|
|
|
|
|
init_latents = vae_encode( |
|
media_items.to(dtype=self.vae.dtype, device=self.vae.device), |
|
self.vae, |
|
vae_per_channel_normalize=vae_per_channel_normalize, |
|
).float() |
|
|
|
init_len, target_len = init_latents.shape[2], num_frames // self.video_scale_factor |
|
if isinstance(self.vae, CausalVideoAutoencoder): |
|
target_len += 1 |
|
init_latents = init_latents[:, :, :target_len] |
|
if target_len > init_len: |
|
repeat_factor = (target_len + init_len - 1) // init_len |
|
init_latents = init_latents.repeat(1, 1, repeat_factor, 1, 1)[:, :, :target_len] |
|
|
|
|
|
b, n, f, h, w = init_latents.shape |
|
conditioning_mask = torch.zeros([b, 1, f, h, w], device=init_latents.device) |
|
if method in [ConditioningMethod.FIRST_FRAME, ConditioningMethod.FIRST_AND_LAST_FRAME]: |
|
conditioning_mask[:, :, 0] = 1.0 |
|
if method in [ConditioningMethod.LAST_FRAME, ConditioningMethod.FIRST_AND_LAST_FRAME]: |
|
conditioning_mask[:, :, -1] = 1.0 |
|
|
|
|
|
conditioning_mask = self.patchifier.patchify(conditioning_mask).squeeze(-1) |
|
init_latents = self.patchifier.patchify(latents=init_latents) |
|
return init_latents, conditioning_mask |
|
|