|
import torch |
|
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder |
|
from xora.models.transformers.transformer3d import Transformer3DModel |
|
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier |
|
from xora.schedulers.rf import RectifiedFlowScheduler |
|
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline |
|
from pathlib import Path |
|
from transformers import T5EncoderModel |
|
|
|
|
|
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS" |
|
vae_local_path = Path("/opt/models/checkpoints/vae_training/causal_vvae_32x32x8_420m_cont_32/step_2296000") |
|
dtype = torch.float32 |
|
vae = CausalVideoAutoencoder.from_pretrained( |
|
pretrained_model_name_or_path=vae_local_path, |
|
revision=False, |
|
torch_dtype=torch.bfloat16, |
|
load_in_8bit=False, |
|
).cuda() |
|
transformer_config_path = Path("/opt/txt2img/txt2img/config/transformer3d/xora_v1.2-L.json") |
|
transformer_config = Transformer3DModel.load_config(transformer_config_path) |
|
transformer = Transformer3DModel.from_config(transformer_config) |
|
transformer_local_path = Path("/opt/models/logs/v1.2-vae-mf-medHR-mr-cvae-nl/ckpt/01760000/model.pt") |
|
transformer_ckpt_state_dict = torch.load(transformer_local_path) |
|
transformer.load_state_dict(transformer_ckpt_state_dict, True) |
|
transformer = transformer.cuda() |
|
unet = transformer |
|
scheduler_config_path = Path("/opt/txt2img/txt2img/config/scheduler/RF_SD3_shifted.json") |
|
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) |
|
scheduler = RectifiedFlowScheduler.from_config(scheduler_config) |
|
patchifier = SymmetricPatchifier(patch_size=1) |
|
|
|
|
|
submodel_dict = { |
|
"unet": unet, |
|
"transformer": transformer, |
|
"patchifier": patchifier, |
|
"text_encoder": None, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
|
|
} |
|
|
|
pipeline = VideoPixArtAlphaPipeline.from_pretrained(model_name_or_path, |
|
safety_checker=None, |
|
revision=None, |
|
torch_dtype=dtype, |
|
**submodel_dict, |
|
) |
|
|
|
num_inference_steps=20 |
|
num_images_per_prompt=2 |
|
guidance_scale=3 |
|
height=512 |
|
width=768 |
|
num_frames=57 |
|
frame_rate=25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample = torch.load("/opt/sample.pt") |
|
for _, item in sample.items(): |
|
if item is not None: |
|
item = item.cuda() |
|
|
|
|
|
|
|
images = pipeline( |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_images_per_prompt, |
|
guidance_scale=guidance_scale, |
|
generator=None, |
|
output_type="pt", |
|
callback_on_step_end=None, |
|
height=height, |
|
width=width, |
|
num_frames=num_frames, |
|
frame_rate=frame_rate, |
|
**sample, |
|
is_video=True, |
|
vae_per_channel_normalize=True, |
|
).images |
|
|
|
print() |