|
from typing import Optional, Union |
|
|
|
import torch |
|
import math |
|
import torch.nn as nn |
|
from diffusers import ConfigMixin, ModelMixin |
|
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution |
|
from diffusers.models.modeling_outputs import AutoencoderKLOutput |
|
from xora.models.autoencoders.conv_nd_factory import make_conv_nd |
|
|
|
|
|
class AutoencoderKLWrapper(ModelMixin, ConfigMixin): |
|
"""Variational Autoencoder (VAE) model with KL loss. |
|
|
|
VAE from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling. |
|
This model is a wrapper around an encoder and a decoder, and it adds a KL loss term to the reconstruction loss. |
|
|
|
Args: |
|
encoder (`nn.Module`): |
|
Encoder module. |
|
decoder (`nn.Module`): |
|
Decoder module. |
|
latent_channels (`int`, *optional*, defaults to 4): |
|
Number of latent channels. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
encoder: nn.Module, |
|
decoder: nn.Module, |
|
latent_channels: int = 4, |
|
dims: int = 2, |
|
sample_size=512, |
|
use_quant_conv: bool = True, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.encoder = encoder |
|
self.use_quant_conv = use_quant_conv |
|
|
|
|
|
quant_dims = 2 if dims == 2 else 3 |
|
self.decoder = decoder |
|
if use_quant_conv: |
|
self.quant_conv = make_conv_nd(quant_dims, 2 * latent_channels, 2 * latent_channels, 1) |
|
self.post_quant_conv = make_conv_nd(quant_dims, latent_channels, latent_channels, 1) |
|
else: |
|
self.quant_conv = nn.Identity() |
|
self.post_quant_conv = nn.Identity() |
|
self.use_z_tiling = False |
|
self.use_hw_tiling = False |
|
self.dims = dims |
|
self.z_sample_size = 1 |
|
|
|
|
|
self.set_tiling_params(sample_size=sample_size, overlap_factor=0.25) |
|
|
|
def set_tiling_params(self, sample_size: int = 512, overlap_factor: float = 0.25): |
|
self.tile_sample_min_size = sample_size |
|
num_blocks = len(self.encoder.down_blocks) |
|
self.tile_latent_min_size = int(sample_size / (2 ** (num_blocks - 1))) |
|
self.tile_overlap_factor = overlap_factor |
|
|
|
def enable_z_tiling(self, z_sample_size: int = 8): |
|
r""" |
|
Enable tiling during VAE decoding. |
|
|
|
When this option is enabled, the VAE will split the input tensor in tiles to compute decoding in several |
|
steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.use_z_tiling = z_sample_size > 1 |
|
self.z_sample_size = z_sample_size |
|
assert ( |
|
z_sample_size % 8 == 0 or z_sample_size == 1 |
|
), f"z_sample_size must be a multiple of 8 or 1. Got {z_sample_size}." |
|
|
|
def disable_z_tiling(self): |
|
r""" |
|
Disable tiling during VAE decoding. If `use_tiling` was previously invoked, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.use_z_tiling = False |
|
|
|
def enable_hw_tiling(self): |
|
r""" |
|
Enable tiling during VAE decoding along the height and width dimension. |
|
""" |
|
self.use_hw_tiling = True |
|
|
|
def disable_hw_tiling(self): |
|
r""" |
|
Disable tiling during VAE decoding along the height and width dimension. |
|
""" |
|
self.use_hw_tiling = False |
|
|
|
def _hw_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True): |
|
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) |
|
row_limit = self.tile_latent_min_size - blend_extent |
|
|
|
|
|
rows = [] |
|
for i in range(0, x.shape[3], overlap_size): |
|
row = [] |
|
for j in range(0, x.shape[4], overlap_size): |
|
tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] |
|
tile = self.encoder(tile) |
|
tile = self.quant_conv(tile) |
|
row.append(tile) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=4)) |
|
|
|
moments = torch.cat(result_rows, dim=3) |
|
return moments |
|
|
|
def blend_z(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[2], b.shape[2], blend_extent) |
|
for z in range(blend_extent): |
|
b[:, :, z, :, :] = a[:, :, -blend_extent + z, :, :] * (1 - z / blend_extent) + b[:, :, z, :, :] * ( |
|
z / blend_extent |
|
) |
|
return b |
|
|
|
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[3], b.shape[3], blend_extent) |
|
for y in range(blend_extent): |
|
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( |
|
y / blend_extent |
|
) |
|
return b |
|
|
|
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[4], b.shape[4], blend_extent) |
|
for x in range(blend_extent): |
|
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( |
|
x / blend_extent |
|
) |
|
return b |
|
|
|
def _hw_tiled_decode(self, z: torch.FloatTensor, target_shape): |
|
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) |
|
row_limit = self.tile_sample_min_size - blend_extent |
|
tile_target_shape = (*target_shape[:3], self.tile_sample_min_size, self.tile_sample_min_size) |
|
|
|
|
|
rows = [] |
|
for i in range(0, z.shape[3], overlap_size): |
|
row = [] |
|
for j in range(0, z.shape[4], overlap_size): |
|
tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] |
|
tile = self.post_quant_conv(tile) |
|
decoded = self.decoder(tile, target_shape=tile_target_shape) |
|
row.append(decoded) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=4)) |
|
|
|
dec = torch.cat(result_rows, dim=3) |
|
return dec |
|
|
|
def encode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1: |
|
num_splits = z.shape[2] // self.z_sample_size |
|
sizes = [self.z_sample_size] * num_splits |
|
sizes = sizes + [z.shape[2] - sum(sizes)] if z.shape[2] - sum(sizes) > 0 else sizes |
|
tiles = z.split(sizes, dim=2) |
|
moments_tiles = [ |
|
self._hw_tiled_encode(z_tile, return_dict) if self.use_hw_tiling else self._encode(z_tile) |
|
for z_tile in tiles |
|
] |
|
moments = torch.cat(moments_tiles, dim=2) |
|
|
|
else: |
|
moments = self._hw_tiled_encode(z, return_dict) if self.use_hw_tiling else self._encode(z) |
|
|
|
posterior = DiagonalGaussianDistribution(moments) |
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def _encode(self, x: torch.FloatTensor) -> AutoencoderKLOutput: |
|
h = self.encoder(x) |
|
moments = self.quant_conv(h) |
|
return moments |
|
|
|
def _decode(self, z: torch.FloatTensor, target_shape=None) -> Union[DecoderOutput, torch.FloatTensor]: |
|
z = self.post_quant_conv(z) |
|
dec = self.decoder(z, target_shape=target_shape) |
|
return dec |
|
|
|
def decode( |
|
self, z: torch.FloatTensor, return_dict: bool = True, target_shape=None |
|
) -> Union[DecoderOutput, torch.FloatTensor]: |
|
assert target_shape is not None, "target_shape must be provided for decoding" |
|
if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1: |
|
reduction_factor = int( |
|
self.encoder.patch_size_t |
|
* 2 ** (len(self.encoder.down_blocks) - 1 - math.sqrt(self.encoder.patch_size)) |
|
) |
|
split_size = self.z_sample_size // reduction_factor |
|
num_splits = z.shape[2] // split_size |
|
|
|
|
|
target_shape_split = list(target_shape) |
|
target_shape_split[2] = target_shape[2] // num_splits |
|
|
|
decoded_tiles = [ |
|
( |
|
self._hw_tiled_decode(z_tile, target_shape_split) |
|
if self.use_hw_tiling |
|
else self._decode(z_tile, target_shape=target_shape_split) |
|
) |
|
for z_tile in torch.tensor_split(z, num_splits, dim=2) |
|
] |
|
decoded = torch.cat(decoded_tiles, dim=2) |
|
else: |
|
decoded = ( |
|
self._hw_tiled_decode(z, target_shape) |
|
if self.use_hw_tiling |
|
else self._decode(z, target_shape=target_shape) |
|
) |
|
|
|
if not return_dict: |
|
return (decoded,) |
|
|
|
return DecoderOutput(sample=decoded) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
sample_posterior: bool = False, |
|
return_dict: bool = True, |
|
generator: Optional[torch.Generator] = None, |
|
) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
Whether to sample from the posterior. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`DecoderOutput`] instead of a plain tuple. |
|
generator (`torch.Generator`, *optional*): |
|
Generator used to sample from the posterior. |
|
""" |
|
x = sample |
|
posterior = self.encode(x).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z, target_shape=sample.shape).sample |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|