|
import json |
|
import os |
|
from functools import partial |
|
from types import SimpleNamespace |
|
from typing import Any, Mapping, Optional, Tuple, Union |
|
|
|
import torch |
|
from einops import rearrange |
|
from torch import nn |
|
from torch.nn import functional |
|
|
|
from diffusers.utils import logging |
|
|
|
from xora.utils.torch_utils import Identity |
|
from xora.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd |
|
from xora.models.autoencoders.pixel_norm import PixelNorm |
|
from xora.models.autoencoders.vae import AutoencoderKLWrapper |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class VideoAutoencoder(AutoencoderKLWrapper): |
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], |
|
*args, |
|
**kwargs, |
|
): |
|
config_local_path = pretrained_model_name_or_path / "config.json" |
|
config = cls.load_config(config_local_path, **kwargs) |
|
video_vae = cls.from_config(config) |
|
video_vae.to(kwargs["torch_dtype"]) |
|
|
|
model_local_path = pretrained_model_name_or_path / "autoencoder.pth" |
|
ckpt_state_dict = torch.load(model_local_path) |
|
video_vae.load_state_dict(ckpt_state_dict) |
|
|
|
statistics_local_path = ( |
|
pretrained_model_name_or_path / "per_channel_statistics.json" |
|
) |
|
if statistics_local_path.exists(): |
|
with open(statistics_local_path, "r") as file: |
|
data = json.load(file) |
|
transposed_data = list(zip(*data["data"])) |
|
data_dict = { |
|
col: torch.tensor(vals) |
|
for col, vals in zip(data["columns"], transposed_data) |
|
} |
|
video_vae.register_buffer("std_of_means", data_dict["std-of-means"]) |
|
video_vae.register_buffer( |
|
"mean_of_means", |
|
data_dict.get( |
|
"mean-of-means", torch.zeros_like(data_dict["std-of-means"]) |
|
), |
|
) |
|
|
|
return video_vae |
|
|
|
@staticmethod |
|
def from_config(config): |
|
assert ( |
|
config["_class_name"] == "VideoAutoencoder" |
|
), "config must have _class_name=VideoAutoencoder" |
|
if isinstance(config["dims"], list): |
|
config["dims"] = tuple(config["dims"]) |
|
|
|
assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)" |
|
|
|
double_z = config.get("double_z", True) |
|
latent_log_var = config.get( |
|
"latent_log_var", "per_channel" if double_z else "none" |
|
) |
|
use_quant_conv = config.get("use_quant_conv", True) |
|
|
|
if use_quant_conv and latent_log_var == "uniform": |
|
raise ValueError("uniform latent_log_var requires use_quant_conv=False") |
|
|
|
encoder = Encoder( |
|
dims=config["dims"], |
|
in_channels=config.get("in_channels", 3), |
|
out_channels=config["latent_channels"], |
|
block_out_channels=config["block_out_channels"], |
|
patch_size=config.get("patch_size", 1), |
|
latent_log_var=latent_log_var, |
|
norm_layer=config.get("norm_layer", "group_norm"), |
|
patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)), |
|
add_channel_padding=config.get("add_channel_padding", False), |
|
) |
|
|
|
decoder = Decoder( |
|
dims=config["dims"], |
|
in_channels=config["latent_channels"], |
|
out_channels=config.get("out_channels", 3), |
|
block_out_channels=config["block_out_channels"], |
|
patch_size=config.get("patch_size", 1), |
|
norm_layer=config.get("norm_layer", "group_norm"), |
|
patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)), |
|
add_channel_padding=config.get("add_channel_padding", False), |
|
) |
|
|
|
dims = config["dims"] |
|
return VideoAutoencoder( |
|
encoder=encoder, |
|
decoder=decoder, |
|
latent_channels=config["latent_channels"], |
|
dims=dims, |
|
use_quant_conv=use_quant_conv, |
|
) |
|
|
|
@property |
|
def config(self): |
|
return SimpleNamespace( |
|
_class_name="VideoAutoencoder", |
|
dims=self.dims, |
|
in_channels=self.encoder.conv_in.in_channels |
|
// (self.encoder.patch_size_t * self.encoder.patch_size**2), |
|
out_channels=self.decoder.conv_out.out_channels |
|
// (self.decoder.patch_size_t * self.decoder.patch_size**2), |
|
latent_channels=self.decoder.conv_in.in_channels, |
|
block_out_channels=[ |
|
self.encoder.down_blocks[i].res_blocks[-1].conv1.out_channels |
|
for i in range(len(self.encoder.down_blocks)) |
|
], |
|
scaling_factor=1.0, |
|
norm_layer=self.encoder.norm_layer, |
|
patch_size=self.encoder.patch_size, |
|
latent_log_var=self.encoder.latent_log_var, |
|
use_quant_conv=self.use_quant_conv, |
|
patch_size_t=self.encoder.patch_size_t, |
|
add_channel_padding=self.encoder.add_channel_padding, |
|
) |
|
|
|
@property |
|
def is_video_supported(self): |
|
""" |
|
Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images. |
|
""" |
|
return self.dims != 2 |
|
|
|
@property |
|
def downscale_factor(self): |
|
return self.encoder.downsample_factor |
|
|
|
def to_json_string(self) -> str: |
|
import json |
|
|
|
return json.dumps(self.config.__dict__) |
|
|
|
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): |
|
model_keys = set(name for name, _ in self.named_parameters()) |
|
|
|
key_mapping = { |
|
".resnets.": ".res_blocks.", |
|
"downsamplers.0": "downsample", |
|
"upsamplers.0": "upsample", |
|
} |
|
|
|
converted_state_dict = {} |
|
for key, value in state_dict.items(): |
|
for k, v in key_mapping.items(): |
|
key = key.replace(k, v) |
|
|
|
if "norm" in key and key not in model_keys: |
|
logger.info( |
|
f"Removing key {key} from state_dict as it is not present in the model" |
|
) |
|
continue |
|
|
|
converted_state_dict[key] = value |
|
|
|
super().load_state_dict(converted_state_dict, strict=strict) |
|
|
|
def last_layer(self): |
|
if hasattr(self.decoder, "conv_out"): |
|
if isinstance(self.decoder.conv_out, nn.Sequential): |
|
last_layer = self.decoder.conv_out[-1] |
|
else: |
|
last_layer = self.decoder.conv_out |
|
else: |
|
last_layer = self.decoder.layers[-1] |
|
return last_layer |
|
|
|
|
|
class Encoder(nn.Module): |
|
r""" |
|
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. |
|
|
|
Args: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`int`, *optional*, defaults to 3): |
|
The number of output channels. |
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): |
|
The number of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups for normalization. |
|
patch_size (`int`, *optional*, defaults to 1): |
|
The patch size to use. Should be a power of 2. |
|
norm_layer (`str`, *optional*, defaults to `group_norm`): |
|
The normalization layer to use. Can be either `group_norm` or `pixel_norm`. |
|
latent_log_var (`str`, *optional*, defaults to `per_channel`): |
|
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dims: Union[int, Tuple[int, int]] = 3, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_block: int = 2, |
|
norm_num_groups: int = 32, |
|
patch_size: Union[int, Tuple[int]] = 1, |
|
norm_layer: str = "group_norm", |
|
latent_log_var: str = "per_channel", |
|
patch_size_t: Optional[int] = None, |
|
add_channel_padding: Optional[bool] = False, |
|
): |
|
super().__init__() |
|
self.patch_size = patch_size |
|
self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size |
|
self.add_channel_padding = add_channel_padding |
|
self.layers_per_block = layers_per_block |
|
self.norm_layer = norm_layer |
|
self.latent_channels = out_channels |
|
self.latent_log_var = latent_log_var |
|
if add_channel_padding: |
|
in_channels = in_channels * self.patch_size**3 |
|
else: |
|
in_channels = in_channels * self.patch_size_t * self.patch_size**2 |
|
self.in_channels = in_channels |
|
output_channel = block_out_channels[0] |
|
|
|
self.conv_in = make_conv_nd( |
|
dims=dims, |
|
in_channels=in_channels, |
|
out_channels=output_channel, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
for i in range(len(block_out_channels)): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = DownEncoderBlock3D( |
|
dims=dims, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
num_layers=self.layers_per_block, |
|
add_downsample=not is_final_block and 2**i >= patch_size, |
|
resnet_eps=1e-6, |
|
downsample_padding=0, |
|
resnet_groups=norm_num_groups, |
|
norm_layer=norm_layer, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
self.mid_block = UNetMidBlock3D( |
|
dims=dims, |
|
in_channels=block_out_channels[-1], |
|
num_layers=self.layers_per_block, |
|
resnet_eps=1e-6, |
|
resnet_groups=norm_num_groups, |
|
norm_layer=norm_layer, |
|
) |
|
|
|
|
|
if norm_layer == "group_norm": |
|
self.conv_norm_out = nn.GroupNorm( |
|
num_channels=block_out_channels[-1], |
|
num_groups=norm_num_groups, |
|
eps=1e-6, |
|
) |
|
elif norm_layer == "pixel_norm": |
|
self.conv_norm_out = PixelNorm() |
|
self.conv_act = nn.SiLU() |
|
|
|
conv_out_channels = out_channels |
|
if latent_log_var == "per_channel": |
|
conv_out_channels *= 2 |
|
elif latent_log_var == "uniform": |
|
conv_out_channels += 1 |
|
elif latent_log_var != "none": |
|
raise ValueError(f"Invalid latent_log_var: {latent_log_var}") |
|
self.conv_out = make_conv_nd( |
|
dims, block_out_channels[-1], conv_out_channels, 3, padding=1 |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
@property |
|
def downscale_factor(self): |
|
return ( |
|
2 |
|
** len( |
|
[ |
|
block |
|
for block in self.down_blocks |
|
if isinstance(block.downsample, Downsample3D) |
|
] |
|
) |
|
* self.patch_size |
|
) |
|
|
|
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: |
|
r"""The forward method of the `Encoder` class.""" |
|
|
|
downsample_in_time = sample.shape[2] != 1 |
|
|
|
|
|
patch_size_t = self.patch_size_t if downsample_in_time else 1 |
|
sample = patchify( |
|
sample, |
|
patch_size_hw=self.patch_size, |
|
patch_size_t=patch_size_t, |
|
add_channel_padding=self.add_channel_padding, |
|
) |
|
|
|
sample = self.conv_in(sample) |
|
|
|
checkpoint_fn = ( |
|
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) |
|
if self.gradient_checkpointing and self.training |
|
else lambda x: x |
|
) |
|
|
|
for down_block in self.down_blocks: |
|
sample = checkpoint_fn(down_block)( |
|
sample, downsample_in_time=downsample_in_time |
|
) |
|
|
|
sample = checkpoint_fn(self.mid_block)(sample) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if self.latent_log_var == "uniform": |
|
last_channel = sample[:, -1:, ...] |
|
num_dims = sample.dim() |
|
|
|
if num_dims == 4: |
|
|
|
repeated_last_channel = last_channel.repeat( |
|
1, sample.shape[1] - 2, 1, 1 |
|
) |
|
sample = torch.cat([sample, repeated_last_channel], dim=1) |
|
elif num_dims == 5: |
|
|
|
repeated_last_channel = last_channel.repeat( |
|
1, sample.shape[1] - 2, 1, 1, 1 |
|
) |
|
sample = torch.cat([sample, repeated_last_channel], dim=1) |
|
else: |
|
raise ValueError(f"Invalid input shape: {sample.shape}") |
|
|
|
return sample |
|
|
|
|
|
class Decoder(nn.Module): |
|
r""" |
|
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. |
|
|
|
Args: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`int`, *optional*, defaults to 3): |
|
The number of output channels. |
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): |
|
The number of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups for normalization. |
|
patch_size (`int`, *optional*, defaults to 1): |
|
The patch size to use. Should be a power of 2. |
|
norm_layer (`str`, *optional*, defaults to `group_norm`): |
|
The normalization layer to use. Can be either `group_norm` or `pixel_norm`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dims, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_block: int = 2, |
|
norm_num_groups: int = 32, |
|
patch_size: int = 1, |
|
norm_layer: str = "group_norm", |
|
patch_size_t: Optional[int] = None, |
|
add_channel_padding: Optional[bool] = False, |
|
): |
|
super().__init__() |
|
self.patch_size = patch_size |
|
self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size |
|
self.add_channel_padding = add_channel_padding |
|
self.layers_per_block = layers_per_block |
|
if add_channel_padding: |
|
out_channels = out_channels * self.patch_size**3 |
|
else: |
|
out_channels = out_channels * self.patch_size_t * self.patch_size**2 |
|
self.out_channels = out_channels |
|
|
|
self.conv_in = make_conv_nd( |
|
dims, |
|
in_channels, |
|
block_out_channels[-1], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.mid_block = None |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
self.mid_block = UNetMidBlock3D( |
|
dims=dims, |
|
in_channels=block_out_channels[-1], |
|
num_layers=self.layers_per_block, |
|
resnet_eps=1e-6, |
|
resnet_groups=norm_num_groups, |
|
norm_layer=norm_layer, |
|
) |
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i in range(len(reversed_block_out_channels)): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
up_block = UpDecoderBlock3D( |
|
dims=dims, |
|
num_layers=self.layers_per_block + 1, |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
add_upsample=not is_final_block |
|
and 2 ** (len(block_out_channels) - i - 1) > patch_size, |
|
resnet_eps=1e-6, |
|
resnet_groups=norm_num_groups, |
|
norm_layer=norm_layer, |
|
) |
|
self.up_blocks.append(up_block) |
|
|
|
if norm_layer == "group_norm": |
|
self.conv_norm_out = nn.GroupNorm( |
|
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6 |
|
) |
|
elif norm_layer == "pixel_norm": |
|
self.conv_norm_out = PixelNorm() |
|
|
|
self.conv_act = nn.SiLU() |
|
self.conv_out = make_conv_nd( |
|
dims, block_out_channels[0], out_channels, 3, padding=1 |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor: |
|
r"""The forward method of the `Decoder` class.""" |
|
assert target_shape is not None, "target_shape must be provided" |
|
upsample_in_time = sample.shape[2] < target_shape[2] |
|
|
|
sample = self.conv_in(sample) |
|
|
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype |
|
|
|
checkpoint_fn = ( |
|
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) |
|
if self.gradient_checkpointing and self.training |
|
else lambda x: x |
|
) |
|
|
|
sample = checkpoint_fn(self.mid_block)(sample) |
|
sample = sample.to(upscale_dtype) |
|
|
|
for up_block in self.up_blocks: |
|
sample = checkpoint_fn(up_block)(sample, upsample_in_time=upsample_in_time) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
|
|
patch_size_t = self.patch_size_t if upsample_in_time else 1 |
|
sample = unpatchify( |
|
sample, |
|
patch_size_hw=self.patch_size, |
|
patch_size_t=patch_size_t, |
|
add_channel_padding=self.add_channel_padding, |
|
) |
|
|
|
return sample |
|
|
|
|
|
class DownEncoderBlock3D(nn.Module): |
|
def __init__( |
|
self, |
|
dims: Union[int, Tuple[int, int]], |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_groups: int = 32, |
|
add_downsample: bool = True, |
|
downsample_padding: int = 1, |
|
norm_layer: str = "group_norm", |
|
): |
|
super().__init__() |
|
res_blocks = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
res_blocks.append( |
|
ResnetBlock3D( |
|
dims=dims, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
norm_layer=norm_layer, |
|
) |
|
) |
|
|
|
self.res_blocks = nn.ModuleList(res_blocks) |
|
|
|
if add_downsample: |
|
self.downsample = Downsample3D( |
|
dims, |
|
out_channels, |
|
out_channels=out_channels, |
|
padding=downsample_padding, |
|
) |
|
else: |
|
self.downsample = Identity() |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, downsample_in_time |
|
) -> torch.FloatTensor: |
|
for resnet in self.res_blocks: |
|
hidden_states = resnet(hidden_states) |
|
|
|
hidden_states = self.downsample( |
|
hidden_states, downsample_in_time=downsample_in_time |
|
) |
|
|
|
return hidden_states |
|
|
|
|
|
class UNetMidBlock3D(nn.Module): |
|
""" |
|
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks. |
|
|
|
Args: |
|
in_channels (`int`): The number of input channels. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout rate. |
|
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. |
|
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. |
|
resnet_groups (`int`, *optional*, defaults to 32): |
|
The number of groups to use in the group normalization layers of the resnet blocks. |
|
|
|
Returns: |
|
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, |
|
in_channels, height, width)`. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
dims: Union[int, Tuple[int, int]], |
|
in_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_groups: int = 32, |
|
norm_layer: str = "group_norm", |
|
): |
|
super().__init__() |
|
resnet_groups = ( |
|
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
) |
|
|
|
self.res_blocks = nn.ModuleList( |
|
[ |
|
ResnetBlock3D( |
|
dims=dims, |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
norm_layer=norm_layer, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
for resnet in self.res_blocks: |
|
hidden_states = resnet(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpDecoderBlock3D(nn.Module): |
|
def __init__( |
|
self, |
|
dims: Union[int, Tuple[int, int]], |
|
in_channels: int, |
|
out_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_groups: int = 32, |
|
add_upsample: bool = True, |
|
norm_layer: str = "group_norm", |
|
): |
|
super().__init__() |
|
res_blocks = [] |
|
|
|
for i in range(num_layers): |
|
input_channels = in_channels if i == 0 else out_channels |
|
|
|
res_blocks.append( |
|
ResnetBlock3D( |
|
dims=dims, |
|
in_channels=input_channels, |
|
out_channels=out_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
norm_layer=norm_layer, |
|
) |
|
) |
|
|
|
self.res_blocks = nn.ModuleList(res_blocks) |
|
|
|
if add_upsample: |
|
self.upsample = Upsample3D( |
|
dims=dims, channels=out_channels, out_channels=out_channels |
|
) |
|
else: |
|
self.upsample = Identity() |
|
|
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, upsample_in_time=True |
|
) -> torch.FloatTensor: |
|
for resnet in self.res_blocks: |
|
hidden_states = resnet(hidden_states) |
|
|
|
hidden_states = self.upsample(hidden_states, upsample_in_time=upsample_in_time) |
|
|
|
return hidden_states |
|
|
|
|
|
class ResnetBlock3D(nn.Module): |
|
r""" |
|
A Resnet block. |
|
|
|
Parameters: |
|
in_channels (`int`): The number of channels in the input. |
|
out_channels (`int`, *optional*, default to be `None`): |
|
The number of output channels for the first conv layer. If None, same as `in_channels`. |
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. |
|
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. |
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dims: Union[int, Tuple[int, int]], |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
conv_shortcut: bool = False, |
|
dropout: float = 0.0, |
|
groups: int = 32, |
|
eps: float = 1e-6, |
|
norm_layer: str = "group_norm", |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
if norm_layer == "group_norm": |
|
self.norm1 = torch.nn.GroupNorm( |
|
num_groups=groups, num_channels=in_channels, eps=eps, affine=True |
|
) |
|
elif norm_layer == "pixel_norm": |
|
self.norm1 = PixelNorm() |
|
|
|
self.non_linearity = nn.SiLU() |
|
|
|
self.conv1 = make_conv_nd( |
|
dims, in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
if norm_layer == "group_norm": |
|
self.norm2 = torch.nn.GroupNorm( |
|
num_groups=groups, num_channels=out_channels, eps=eps, affine=True |
|
) |
|
elif norm_layer == "pixel_norm": |
|
self.norm2 = PixelNorm() |
|
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
|
|
self.conv2 = make_conv_nd( |
|
dims, out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
self.conv_shortcut = ( |
|
make_linear_nd( |
|
dims=dims, in_channels=in_channels, out_channels=out_channels |
|
) |
|
if in_channels != out_channels |
|
else nn.Identity() |
|
) |
|
|
|
def forward( |
|
self, |
|
input_tensor: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
hidden_states = input_tensor |
|
|
|
hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.non_linearity(hidden_states) |
|
|
|
hidden_states = self.conv1(hidden_states) |
|
|
|
hidden_states = self.norm2(hidden_states) |
|
|
|
hidden_states = self.non_linearity(hidden_states) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
|
|
hidden_states = self.conv2(hidden_states) |
|
|
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
output_tensor = input_tensor + hidden_states |
|
|
|
return output_tensor |
|
|
|
|
|
class Downsample3D(nn.Module): |
|
def __init__( |
|
self, |
|
dims, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int = 3, |
|
padding: int = 1, |
|
): |
|
super().__init__() |
|
stride: int = 2 |
|
self.padding = padding |
|
self.in_channels = in_channels |
|
self.dims = dims |
|
self.conv = make_conv_nd( |
|
dims=dims, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
) |
|
|
|
def forward(self, x, downsample_in_time=True): |
|
conv = self.conv |
|
if self.padding == 0: |
|
if self.dims == 2: |
|
padding = (0, 1, 0, 1) |
|
else: |
|
padding = (0, 1, 0, 1, 0, 1 if downsample_in_time else 0) |
|
|
|
x = functional.pad(x, padding, mode="constant", value=0) |
|
|
|
if self.dims == (2, 1) and not downsample_in_time: |
|
return conv(x, skip_time_conv=True) |
|
|
|
return conv(x) |
|
|
|
|
|
class Upsample3D(nn.Module): |
|
""" |
|
An upsampling layer for 3D tensors of shape (B, C, D, H, W). |
|
|
|
:param channels: channels in the inputs and outputs. |
|
""" |
|
|
|
def __init__(self, dims, channels, out_channels=None): |
|
super().__init__() |
|
self.dims = dims |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.conv = make_conv_nd( |
|
dims, channels, out_channels, kernel_size=3, padding=1, bias=True |
|
) |
|
|
|
def forward(self, x, upsample_in_time): |
|
if self.dims == 2: |
|
x = functional.interpolate( |
|
x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest" |
|
) |
|
else: |
|
time_scale_factor = 2 if upsample_in_time else 1 |
|
|
|
b, c, d, h, w = x.shape |
|
x = rearrange(x, "b c d h w -> (b d) c h w") |
|
|
|
x = functional.interpolate( |
|
x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest" |
|
) |
|
_, _, h, w = x.shape |
|
|
|
if not upsample_in_time and self.dims == (2, 1): |
|
x = rearrange(x, "(b d) c h w -> b c d h w ", b=b, h=h, w=w) |
|
return self.conv(x, skip_time_conv=True) |
|
|
|
|
|
x = rearrange(x, "(b d) c h w -> (b h w) c 1 d", b=b) |
|
|
|
|
|
new_d = x.shape[-1] * time_scale_factor |
|
x = functional.interpolate(x, (1, new_d), mode="nearest") |
|
|
|
x = rearrange( |
|
x, "(b h w) c 1 new_d -> b c new_d h w", b=b, h=h, w=w, new_d=new_d |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return self.conv(x) |
|
|
|
|
|
def patchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False): |
|
if patch_size_hw == 1 and patch_size_t == 1: |
|
return x |
|
if x.dim() == 4: |
|
x = rearrange( |
|
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw |
|
) |
|
elif x.dim() == 5: |
|
x = rearrange( |
|
x, |
|
"b c (f p) (h q) (w r) -> b (c p r q) f h w", |
|
p=patch_size_t, |
|
q=patch_size_hw, |
|
r=patch_size_hw, |
|
) |
|
else: |
|
raise ValueError(f"Invalid input shape: {x.shape}") |
|
|
|
if ( |
|
(x.dim() == 5) |
|
and (patch_size_hw > patch_size_t) |
|
and (patch_size_t > 1 or add_channel_padding) |
|
): |
|
channels_to_pad = x.shape[1] * (patch_size_hw // patch_size_t) - x.shape[1] |
|
padding_zeros = torch.zeros( |
|
x.shape[0], |
|
channels_to_pad, |
|
x.shape[2], |
|
x.shape[3], |
|
x.shape[4], |
|
device=x.device, |
|
dtype=x.dtype, |
|
) |
|
x = torch.cat([padding_zeros, x], dim=1) |
|
|
|
return x |
|
|
|
|
|
def unpatchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False): |
|
if patch_size_hw == 1 and patch_size_t == 1: |
|
return x |
|
|
|
if ( |
|
(x.dim() == 5) |
|
and (patch_size_hw > patch_size_t) |
|
and (patch_size_t > 1 or add_channel_padding) |
|
): |
|
channels_to_keep = int(x.shape[1] * (patch_size_t / patch_size_hw)) |
|
x = x[:, :channels_to_keep, :, :, :] |
|
|
|
if x.dim() == 4: |
|
x = rearrange( |
|
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw |
|
) |
|
elif x.dim() == 5: |
|
x = rearrange( |
|
x, |
|
"b (c p r q) f h w -> b c (f p) (h q) (w r)", |
|
p=patch_size_t, |
|
q=patch_size_hw, |
|
r=patch_size_hw, |
|
) |
|
|
|
return x |
|
|
|
|
|
def create_video_autoencoder_config( |
|
latent_channels: int = 4, |
|
): |
|
config = { |
|
"_class_name": "VideoAutoencoder", |
|
"dims": ( |
|
2, |
|
1, |
|
), |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"latent_channels": latent_channels, |
|
"block_out_channels": [ |
|
128, |
|
256, |
|
512, |
|
512, |
|
], |
|
"patch_size": 1, |
|
} |
|
|
|
return config |
|
|
|
|
|
def create_video_autoencoder_pathify4x4x4_config( |
|
latent_channels: int = 4, |
|
): |
|
config = { |
|
"_class_name": "VideoAutoencoder", |
|
"dims": ( |
|
2, |
|
1, |
|
), |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"latent_channels": latent_channels, |
|
"block_out_channels": [512] |
|
* 4, |
|
"patch_size": 4, |
|
"latent_log_var": "uniform", |
|
} |
|
|
|
return config |
|
|
|
|
|
def create_video_autoencoder_pathify4x4_config( |
|
latent_channels: int = 4, |
|
): |
|
config = { |
|
"_class_name": "VideoAutoencoder", |
|
"dims": 2, |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"latent_channels": latent_channels, |
|
"block_out_channels": [512] |
|
* 4, |
|
"patch_size": 4, |
|
"norm_layer": "pixel_norm", |
|
} |
|
|
|
return config |
|
|
|
|
|
def test_vae_patchify_unpatchify(): |
|
import torch |
|
|
|
x = torch.randn(2, 3, 8, 64, 64) |
|
x_patched = patchify(x, patch_size_hw=4, patch_size_t=4) |
|
x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4) |
|
assert torch.allclose(x, x_unpatched) |
|
|
|
|
|
def demo_video_autoencoder_forward_backward(): |
|
|
|
config = create_video_autoencoder_pathify4x4x4_config() |
|
|
|
|
|
video_autoencoder = VideoAutoencoder.from_config(config) |
|
|
|
print(video_autoencoder) |
|
|
|
|
|
total_params = sum(p.numel() for p in video_autoencoder.parameters()) |
|
print(f"Total number of parameters in VideoAutoencoder: {total_params:,}") |
|
|
|
|
|
|
|
|
|
input_videos = torch.randn(2, 3, 8, 64, 64) |
|
|
|
|
|
latent = video_autoencoder.encode(input_videos).latent_dist.mode() |
|
print(f"input shape={input_videos.shape}") |
|
print(f"latent shape={latent.shape}") |
|
reconstructed_videos = video_autoencoder.decode( |
|
latent, target_shape=input_videos.shape |
|
).sample |
|
|
|
print(f"reconstructed shape={reconstructed_videos.shape}") |
|
|
|
|
|
loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos) |
|
|
|
|
|
loss.backward() |
|
|
|
print(f"Demo completed with loss: {loss.item()}") |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo_video_autoencoder_forward_backward() |
|
|