erichardson
VAE: Support different latent_var_log options when returning intermediate features for 3D perceptual loss
7d89bb0
import json | |
import os | |
from functools import partial | |
from types import SimpleNamespace | |
from typing import Any, Mapping, Optional, Tuple, Union | |
import torch | |
from einops import rearrange | |
from torch import nn | |
from torch.nn import functional | |
from diffusers.utils import logging | |
from xora.utils.torch_utils import Identity | |
from xora.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd | |
from xora.models.autoencoders.pixel_norm import PixelNorm | |
from xora.models.autoencoders.vae import AutoencoderKLWrapper | |
logger = logging.get_logger(__name__) | |
class VideoAutoencoder(AutoencoderKLWrapper): | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], | |
*args, | |
**kwargs, | |
): | |
config_local_path = pretrained_model_name_or_path / "config.json" | |
config = cls.load_config(config_local_path, **kwargs) | |
video_vae = cls.from_config(config) | |
video_vae.to(kwargs["torch_dtype"]) | |
model_local_path = pretrained_model_name_or_path / "autoencoder.pth" | |
ckpt_state_dict = torch.load(model_local_path) | |
video_vae.load_state_dict(ckpt_state_dict) | |
statistics_local_path = ( | |
pretrained_model_name_or_path / "per_channel_statistics.json" | |
) | |
if statistics_local_path.exists(): | |
with open(statistics_local_path, "r") as file: | |
data = json.load(file) | |
transposed_data = list(zip(*data["data"])) | |
data_dict = { | |
col: torch.tensor(vals) | |
for col, vals in zip(data["columns"], transposed_data) | |
} | |
video_vae.register_buffer("std_of_means", data_dict["std-of-means"]) | |
video_vae.register_buffer( | |
"mean_of_means", | |
data_dict.get( | |
"mean-of-means", torch.zeros_like(data_dict["std-of-means"]) | |
), | |
) | |
return video_vae | |
def from_config(config): | |
assert ( | |
config["_class_name"] == "VideoAutoencoder" | |
), "config must have _class_name=VideoAutoencoder" | |
if isinstance(config["dims"], list): | |
config["dims"] = tuple(config["dims"]) | |
assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)" | |
double_z = config.get("double_z", True) | |
latent_log_var = config.get( | |
"latent_log_var", "per_channel" if double_z else "none" | |
) | |
use_quant_conv = config.get("use_quant_conv", True) | |
if use_quant_conv and latent_log_var == "uniform": | |
raise ValueError("uniform latent_log_var requires use_quant_conv=False") | |
encoder = Encoder( | |
dims=config["dims"], | |
in_channels=config.get("in_channels", 3), | |
out_channels=config["latent_channels"], | |
block_out_channels=config["block_out_channels"], | |
patch_size=config.get("patch_size", 1), | |
latent_log_var=latent_log_var, | |
norm_layer=config.get("norm_layer", "group_norm"), | |
patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)), | |
add_channel_padding=config.get("add_channel_padding", False), | |
) | |
decoder = Decoder( | |
dims=config["dims"], | |
in_channels=config["latent_channels"], | |
out_channels=config.get("out_channels", 3), | |
block_out_channels=config["block_out_channels"], | |
patch_size=config.get("patch_size", 1), | |
norm_layer=config.get("norm_layer", "group_norm"), | |
patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)), | |
add_channel_padding=config.get("add_channel_padding", False), | |
) | |
dims = config["dims"] | |
return VideoAutoencoder( | |
encoder=encoder, | |
decoder=decoder, | |
latent_channels=config["latent_channels"], | |
dims=dims, | |
use_quant_conv=use_quant_conv, | |
) | |
def config(self): | |
return SimpleNamespace( | |
_class_name="VideoAutoencoder", | |
dims=self.dims, | |
in_channels=self.encoder.conv_in.in_channels | |
// (self.encoder.patch_size_t * self.encoder.patch_size**2), | |
out_channels=self.decoder.conv_out.out_channels | |
// (self.decoder.patch_size_t * self.decoder.patch_size**2), | |
latent_channels=self.decoder.conv_in.in_channels, | |
block_out_channels=[ | |
self.encoder.down_blocks[i].res_blocks[-1].conv1.out_channels | |
for i in range(len(self.encoder.down_blocks)) | |
], | |
scaling_factor=1.0, | |
norm_layer=self.encoder.norm_layer, | |
patch_size=self.encoder.patch_size, | |
latent_log_var=self.encoder.latent_log_var, | |
use_quant_conv=self.use_quant_conv, | |
patch_size_t=self.encoder.patch_size_t, | |
add_channel_padding=self.encoder.add_channel_padding, | |
) | |
def is_video_supported(self): | |
""" | |
Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images. | |
""" | |
return self.dims != 2 | |
def downscale_factor(self): | |
return self.encoder.downsample_factor | |
def to_json_string(self) -> str: | |
import json | |
return json.dumps(self.config.__dict__) | |
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): | |
model_keys = set(name for name, _ in self.named_parameters()) | |
key_mapping = { | |
".resnets.": ".res_blocks.", | |
"downsamplers.0": "downsample", | |
"upsamplers.0": "upsample", | |
} | |
converted_state_dict = {} | |
for key, value in state_dict.items(): | |
for k, v in key_mapping.items(): | |
key = key.replace(k, v) | |
if "norm" in key and key not in model_keys: | |
logger.info( | |
f"Removing key {key} from state_dict as it is not present in the model" | |
) | |
continue | |
converted_state_dict[key] = value | |
super().load_state_dict(converted_state_dict, strict=strict) | |
def last_layer(self): | |
if hasattr(self.decoder, "conv_out"): | |
if isinstance(self.decoder.conv_out, nn.Sequential): | |
last_layer = self.decoder.conv_out[-1] | |
else: | |
last_layer = self.decoder.conv_out | |
else: | |
last_layer = self.decoder.layers[-1] | |
return last_layer | |
class Encoder(nn.Module): | |
r""" | |
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
The number of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups for normalization. | |
patch_size (`int`, *optional*, defaults to 1): | |
The patch size to use. Should be a power of 2. | |
norm_layer (`str`, *optional*, defaults to `group_norm`): | |
The normalization layer to use. Can be either `group_norm` or `pixel_norm`. | |
latent_log_var (`str`, *optional*, defaults to `per_channel`): | |
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`. | |
""" | |
def __init__( | |
self, | |
dims: Union[int, Tuple[int, int]] = 3, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
block_out_channels: Tuple[int, ...] = (64,), | |
layers_per_block: int = 2, | |
norm_num_groups: int = 32, | |
patch_size: Union[int, Tuple[int]] = 1, | |
norm_layer: str = "group_norm", # group_norm, pixel_norm | |
latent_log_var: str = "per_channel", | |
patch_size_t: Optional[int] = None, | |
add_channel_padding: Optional[bool] = False, | |
): | |
super().__init__() | |
self.patch_size = patch_size | |
self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size | |
self.add_channel_padding = add_channel_padding | |
self.layers_per_block = layers_per_block | |
self.norm_layer = norm_layer | |
self.latent_channels = out_channels | |
self.latent_log_var = latent_log_var | |
if add_channel_padding: | |
in_channels = in_channels * self.patch_size**3 | |
else: | |
in_channels = in_channels * self.patch_size_t * self.patch_size**2 | |
self.in_channels = in_channels | |
output_channel = block_out_channels[0] | |
self.conv_in = make_conv_nd( | |
dims=dims, | |
in_channels=in_channels, | |
out_channels=output_channel, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.down_blocks = nn.ModuleList([]) | |
for i in range(len(block_out_channels)): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = DownEncoderBlock3D( | |
dims=dims, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
num_layers=self.layers_per_block, | |
add_downsample=not is_final_block and 2**i >= patch_size, | |
resnet_eps=1e-6, | |
downsample_padding=0, | |
resnet_groups=norm_num_groups, | |
norm_layer=norm_layer, | |
) | |
self.down_blocks.append(down_block) | |
self.mid_block = UNetMidBlock3D( | |
dims=dims, | |
in_channels=block_out_channels[-1], | |
num_layers=self.layers_per_block, | |
resnet_eps=1e-6, | |
resnet_groups=norm_num_groups, | |
norm_layer=norm_layer, | |
) | |
# out | |
if norm_layer == "group_norm": | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[-1], | |
num_groups=norm_num_groups, | |
eps=1e-6, | |
) | |
elif norm_layer == "pixel_norm": | |
self.conv_norm_out = PixelNorm() | |
self.conv_act = nn.SiLU() | |
conv_out_channels = out_channels | |
if latent_log_var == "per_channel": | |
conv_out_channels *= 2 | |
elif latent_log_var == "uniform": | |
conv_out_channels += 1 | |
elif latent_log_var != "none": | |
raise ValueError(f"Invalid latent_log_var: {latent_log_var}") | |
self.conv_out = make_conv_nd( | |
dims, block_out_channels[-1], conv_out_channels, 3, padding=1 | |
) | |
self.gradient_checkpointing = False | |
def downscale_factor(self): | |
return ( | |
2 | |
** len( | |
[ | |
block | |
for block in self.down_blocks | |
if isinstance(block.downsample, Downsample3D) | |
] | |
) | |
* self.patch_size | |
) | |
def forward( | |
self, sample: torch.FloatTensor, return_features=False | |
) -> torch.FloatTensor: | |
r"""The forward method of the `Encoder` class.""" | |
downsample_in_time = sample.shape[2] != 1 | |
# patchify | |
patch_size_t = self.patch_size_t if downsample_in_time else 1 | |
sample = patchify( | |
sample, | |
patch_size_hw=self.patch_size, | |
patch_size_t=patch_size_t, | |
add_channel_padding=self.add_channel_padding, | |
) | |
sample = self.conv_in(sample) | |
checkpoint_fn = ( | |
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) | |
if self.gradient_checkpointing and self.training | |
else lambda x: x | |
) | |
if return_features: | |
features = [] | |
for down_block in self.down_blocks: | |
sample = checkpoint_fn(down_block)( | |
sample, downsample_in_time=downsample_in_time | |
) | |
if return_features: | |
features.append(sample) | |
sample = checkpoint_fn(self.mid_block)(sample) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if self.latent_log_var == "uniform": | |
last_channel = sample[:, -1:, ...] | |
num_dims = sample.dim() | |
if num_dims == 4: | |
# For shape (B, C, H, W) | |
repeated_last_channel = last_channel.repeat( | |
1, sample.shape[1] - 2, 1, 1 | |
) | |
sample = torch.cat([sample, repeated_last_channel], dim=1) | |
elif num_dims == 5: | |
# For shape (B, C, F, H, W) | |
repeated_last_channel = last_channel.repeat( | |
1, sample.shape[1] - 2, 1, 1, 1 | |
) | |
sample = torch.cat([sample, repeated_last_channel], dim=1) | |
else: | |
raise ValueError(f"Invalid input shape: {sample.shape}") | |
if return_features: | |
features.append(sample[:, : self.latent_channels, ...]) | |
return sample, features | |
return sample | |
class Decoder(nn.Module): | |
r""" | |
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
The number of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups for normalization. | |
patch_size (`int`, *optional*, defaults to 1): | |
The patch size to use. Should be a power of 2. | |
norm_layer (`str`, *optional*, defaults to `group_norm`): | |
The normalization layer to use. Can be either `group_norm` or `pixel_norm`. | |
""" | |
def __init__( | |
self, | |
dims, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
block_out_channels: Tuple[int, ...] = (64,), | |
layers_per_block: int = 2, | |
norm_num_groups: int = 32, | |
patch_size: int = 1, | |
norm_layer: str = "group_norm", | |
patch_size_t: Optional[int] = None, | |
add_channel_padding: Optional[bool] = False, | |
): | |
super().__init__() | |
self.patch_size = patch_size | |
self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size | |
self.add_channel_padding = add_channel_padding | |
self.layers_per_block = layers_per_block | |
if add_channel_padding: | |
out_channels = out_channels * self.patch_size**3 | |
else: | |
out_channels = out_channels * self.patch_size_t * self.patch_size**2 | |
self.out_channels = out_channels | |
self.conv_in = make_conv_nd( | |
dims, | |
in_channels, | |
block_out_channels[-1], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
self.mid_block = UNetMidBlock3D( | |
dims=dims, | |
in_channels=block_out_channels[-1], | |
num_layers=self.layers_per_block, | |
resnet_eps=1e-6, | |
resnet_groups=norm_num_groups, | |
norm_layer=norm_layer, | |
) | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i in range(len(reversed_block_out_channels)): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = UpDecoderBlock3D( | |
dims=dims, | |
num_layers=self.layers_per_block + 1, | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
add_upsample=not is_final_block | |
and 2 ** (len(block_out_channels) - i - 1) > patch_size, | |
resnet_eps=1e-6, | |
resnet_groups=norm_num_groups, | |
norm_layer=norm_layer, | |
) | |
self.up_blocks.append(up_block) | |
if norm_layer == "group_norm": | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6 | |
) | |
elif norm_layer == "pixel_norm": | |
self.conv_norm_out = PixelNorm() | |
self.conv_act = nn.SiLU() | |
self.conv_out = make_conv_nd( | |
dims, block_out_channels[0], out_channels, 3, padding=1 | |
) | |
self.gradient_checkpointing = False | |
def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor: | |
r"""The forward method of the `Decoder` class.""" | |
assert target_shape is not None, "target_shape must be provided" | |
upsample_in_time = sample.shape[2] < target_shape[2] | |
sample = self.conv_in(sample) | |
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype | |
checkpoint_fn = ( | |
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) | |
if self.gradient_checkpointing and self.training | |
else lambda x: x | |
) | |
sample = checkpoint_fn(self.mid_block)(sample) | |
sample = sample.to(upscale_dtype) | |
for up_block in self.up_blocks: | |
sample = checkpoint_fn(up_block)(sample, upsample_in_time=upsample_in_time) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
# un-patchify | |
patch_size_t = self.patch_size_t if upsample_in_time else 1 | |
sample = unpatchify( | |
sample, | |
patch_size_hw=self.patch_size, | |
patch_size_t=patch_size_t, | |
add_channel_padding=self.add_channel_padding, | |
) | |
return sample | |
class DownEncoderBlock3D(nn.Module): | |
def __init__( | |
self, | |
dims: Union[int, Tuple[int, int]], | |
in_channels: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_groups: int = 32, | |
add_downsample: bool = True, | |
downsample_padding: int = 1, | |
norm_layer: str = "group_norm", | |
): | |
super().__init__() | |
res_blocks = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
res_blocks.append( | |
ResnetBlock3D( | |
dims=dims, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
norm_layer=norm_layer, | |
) | |
) | |
self.res_blocks = nn.ModuleList(res_blocks) | |
if add_downsample: | |
self.downsample = Downsample3D( | |
dims, | |
out_channels, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
) | |
else: | |
self.downsample = Identity() | |
def forward( | |
self, hidden_states: torch.FloatTensor, downsample_in_time | |
) -> torch.FloatTensor: | |
for resnet in self.res_blocks: | |
hidden_states = resnet(hidden_states) | |
hidden_states = self.downsample( | |
hidden_states, downsample_in_time=downsample_in_time | |
) | |
return hidden_states | |
class UNetMidBlock3D(nn.Module): | |
""" | |
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks. | |
Args: | |
in_channels (`int`): The number of input channels. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout rate. | |
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. | |
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. | |
resnet_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use in the group normalization layers of the resnet blocks. | |
Returns: | |
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, | |
in_channels, height, width)`. | |
""" | |
def __init__( | |
self, | |
dims: Union[int, Tuple[int, int]], | |
in_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_groups: int = 32, | |
norm_layer: str = "group_norm", | |
): | |
super().__init__() | |
resnet_groups = ( | |
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
) | |
self.res_blocks = nn.ModuleList( | |
[ | |
ResnetBlock3D( | |
dims=dims, | |
in_channels=in_channels, | |
out_channels=in_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
norm_layer=norm_layer, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
for resnet in self.res_blocks: | |
hidden_states = resnet(hidden_states) | |
return hidden_states | |
class UpDecoderBlock3D(nn.Module): | |
def __init__( | |
self, | |
dims: Union[int, Tuple[int, int]], | |
in_channels: int, | |
out_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_groups: int = 32, | |
add_upsample: bool = True, | |
norm_layer: str = "group_norm", | |
): | |
super().__init__() | |
res_blocks = [] | |
for i in range(num_layers): | |
input_channels = in_channels if i == 0 else out_channels | |
res_blocks.append( | |
ResnetBlock3D( | |
dims=dims, | |
in_channels=input_channels, | |
out_channels=out_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
norm_layer=norm_layer, | |
) | |
) | |
self.res_blocks = nn.ModuleList(res_blocks) | |
if add_upsample: | |
self.upsample = Upsample3D( | |
dims=dims, channels=out_channels, out_channels=out_channels | |
) | |
else: | |
self.upsample = Identity() | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, hidden_states: torch.FloatTensor, upsample_in_time=True | |
) -> torch.FloatTensor: | |
for resnet in self.res_blocks: | |
hidden_states = resnet(hidden_states) | |
hidden_states = self.upsample(hidden_states, upsample_in_time=upsample_in_time) | |
return hidden_states | |
class ResnetBlock3D(nn.Module): | |
r""" | |
A Resnet block. | |
Parameters: | |
in_channels (`int`): The number of channels in the input. | |
out_channels (`int`, *optional*, default to be `None`): | |
The number of output channels for the first conv layer. If None, same as `in_channels`. | |
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. | |
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. | |
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. | |
""" | |
def __init__( | |
self, | |
dims: Union[int, Tuple[int, int]], | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
conv_shortcut: bool = False, | |
dropout: float = 0.0, | |
groups: int = 32, | |
eps: float = 1e-6, | |
norm_layer: str = "group_norm", | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
if norm_layer == "group_norm": | |
self.norm1 = torch.nn.GroupNorm( | |
num_groups=groups, num_channels=in_channels, eps=eps, affine=True | |
) | |
elif norm_layer == "pixel_norm": | |
self.norm1 = PixelNorm() | |
self.non_linearity = nn.SiLU() | |
self.conv1 = make_conv_nd( | |
dims, in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if norm_layer == "group_norm": | |
self.norm2 = torch.nn.GroupNorm( | |
num_groups=groups, num_channels=out_channels, eps=eps, affine=True | |
) | |
elif norm_layer == "pixel_norm": | |
self.norm2 = PixelNorm() | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = make_conv_nd( | |
dims, out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
self.conv_shortcut = ( | |
make_linear_nd( | |
dims=dims, in_channels=in_channels, out_channels=out_channels | |
) | |
if in_channels != out_channels | |
else nn.Identity() | |
) | |
def forward( | |
self, | |
input_tensor: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.non_linearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = self.non_linearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = input_tensor + hidden_states | |
return output_tensor | |
class Downsample3D(nn.Module): | |
def __init__( | |
self, | |
dims, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int = 3, | |
padding: int = 1, | |
): | |
super().__init__() | |
stride: int = 2 | |
self.padding = padding | |
self.in_channels = in_channels | |
self.dims = dims | |
self.conv = make_conv_nd( | |
dims=dims, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
) | |
def forward(self, x, downsample_in_time=True): | |
conv = self.conv | |
if self.padding == 0: | |
if self.dims == 2: | |
padding = (0, 1, 0, 1) | |
else: | |
padding = (0, 1, 0, 1, 0, 1 if downsample_in_time else 0) | |
x = functional.pad(x, padding, mode="constant", value=0) | |
if self.dims == (2, 1) and not downsample_in_time: | |
return conv(x, skip_time_conv=True) | |
return conv(x) | |
class Upsample3D(nn.Module): | |
""" | |
An upsampling layer for 3D tensors of shape (B, C, D, H, W). | |
:param channels: channels in the inputs and outputs. | |
""" | |
def __init__(self, dims, channels, out_channels=None): | |
super().__init__() | |
self.dims = dims | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.conv = make_conv_nd( | |
dims, channels, out_channels, kernel_size=3, padding=1, bias=True | |
) | |
def forward(self, x, upsample_in_time): | |
if self.dims == 2: | |
x = functional.interpolate( | |
x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest" | |
) | |
else: | |
time_scale_factor = 2 if upsample_in_time else 1 | |
# print("before:", x.shape) | |
b, c, d, h, w = x.shape | |
x = rearrange(x, "b c d h w -> (b d) c h w") | |
# height and width interpolate | |
x = functional.interpolate( | |
x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest" | |
) | |
_, _, h, w = x.shape | |
if not upsample_in_time and self.dims == (2, 1): | |
x = rearrange(x, "(b d) c h w -> b c d h w ", b=b, h=h, w=w) | |
return self.conv(x, skip_time_conv=True) | |
# Second ** upsampling ** which is essentially treated as a 1D convolution across the 'd' dimension | |
x = rearrange(x, "(b d) c h w -> (b h w) c 1 d", b=b) | |
# (b h w) c 1 d | |
new_d = x.shape[-1] * time_scale_factor | |
x = functional.interpolate(x, (1, new_d), mode="nearest") | |
# (b h w) c 1 new_d | |
x = rearrange( | |
x, "(b h w) c 1 new_d -> b c new_d h w", b=b, h=h, w=w, new_d=new_d | |
) | |
# b c d h w | |
# x = functional.interpolate( | |
# x, (x.shape[2] * time_scale_factor, x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
# ) | |
# print("after:", x.shape) | |
return self.conv(x) | |
def patchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False): | |
if patch_size_hw == 1 and patch_size_t == 1: | |
return x | |
if x.dim() == 4: | |
x = rearrange( | |
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw | |
) | |
elif x.dim() == 5: | |
x = rearrange( | |
x, | |
"b c (f p) (h q) (w r) -> b (c p r q) f h w", | |
p=patch_size_t, | |
q=patch_size_hw, | |
r=patch_size_hw, | |
) | |
else: | |
raise ValueError(f"Invalid input shape: {x.shape}") | |
if ( | |
(x.dim() == 5) | |
and (patch_size_hw > patch_size_t) | |
and (patch_size_t > 1 or add_channel_padding) | |
): | |
channels_to_pad = x.shape[1] * (patch_size_hw // patch_size_t) - x.shape[1] | |
padding_zeros = torch.zeros( | |
x.shape[0], | |
channels_to_pad, | |
x.shape[2], | |
x.shape[3], | |
x.shape[4], | |
device=x.device, | |
dtype=x.dtype, | |
) | |
x = torch.cat([padding_zeros, x], dim=1) | |
return x | |
def unpatchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False): | |
if patch_size_hw == 1 and patch_size_t == 1: | |
return x | |
if ( | |
(x.dim() == 5) | |
and (patch_size_hw > patch_size_t) | |
and (patch_size_t > 1 or add_channel_padding) | |
): | |
channels_to_keep = int(x.shape[1] * (patch_size_t / patch_size_hw)) | |
x = x[:, :channels_to_keep, :, :, :] | |
if x.dim() == 4: | |
x = rearrange( | |
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw | |
) | |
elif x.dim() == 5: | |
x = rearrange( | |
x, | |
"b (c p r q) f h w -> b c (f p) (h q) (w r)", | |
p=patch_size_t, | |
q=patch_size_hw, | |
r=patch_size_hw, | |
) | |
return x | |
def create_video_autoencoder_config( | |
latent_channels: int = 4, | |
): | |
config = { | |
"_class_name": "VideoAutoencoder", | |
"dims": ( | |
2, | |
1, | |
), # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d | |
"in_channels": 3, # Number of input color channels (e.g., RGB) | |
"out_channels": 3, # Number of output color channels | |
"latent_channels": latent_channels, # Number of channels in the latent space representation | |
"block_out_channels": [ | |
128, | |
256, | |
512, | |
512, | |
], # Number of output channels of each encoder / decoder inner block | |
"patch_size": 1, | |
} | |
return config | |
def create_video_autoencoder_pathify4x4x4_config( | |
latent_channels: int = 4, | |
): | |
config = { | |
"_class_name": "VideoAutoencoder", | |
"dims": ( | |
2, | |
1, | |
), # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d | |
"in_channels": 3, # Number of input color channels (e.g., RGB) | |
"out_channels": 3, # Number of output color channels | |
"latent_channels": latent_channels, # Number of channels in the latent space representation | |
"block_out_channels": [512] | |
* 4, # Number of output channels of each encoder / decoder inner block | |
"patch_size": 4, | |
"latent_log_var": "uniform", | |
} | |
return config | |
def create_video_autoencoder_pathify4x4_config( | |
latent_channels: int = 4, | |
): | |
config = { | |
"_class_name": "VideoAutoencoder", | |
"dims": 2, # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d | |
"in_channels": 3, # Number of input color channels (e.g., RGB) | |
"out_channels": 3, # Number of output color channels | |
"latent_channels": latent_channels, # Number of channels in the latent space representation | |
"block_out_channels": [512] | |
* 4, # Number of output channels of each encoder / decoder inner block | |
"patch_size": 4, | |
"norm_layer": "pixel_norm", | |
} | |
return config | |
def test_vae_patchify_unpatchify(): | |
import torch | |
x = torch.randn(2, 3, 8, 64, 64) | |
x_patched = patchify(x, patch_size_hw=4, patch_size_t=4) | |
x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4) | |
assert torch.allclose(x, x_unpatched) | |
def demo_video_autoencoder_forward_backward(): | |
# Configuration for the VideoAutoencoder | |
config = create_video_autoencoder_pathify4x4x4_config() | |
# Instantiate the VideoAutoencoder with the specified configuration | |
video_autoencoder = VideoAutoencoder.from_config(config) | |
print(video_autoencoder) | |
# Print the total number of parameters in the video autoencoder | |
total_params = sum(p.numel() for p in video_autoencoder.parameters()) | |
print(f"Total number of parameters in VideoAutoencoder: {total_params:,}") | |
# Create a mock input tensor simulating a batch of videos | |
# Shape: (batch_size, channels, depth, height, width) | |
# E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame | |
input_videos = torch.randn(2, 3, 8, 64, 64) | |
# Forward pass: encode and decode the input videos | |
latent = video_autoencoder.encode(input_videos).latent_dist.mode() | |
print(f"input shape={input_videos.shape}") | |
print(f"latent shape={latent.shape}") | |
reconstructed_videos = video_autoencoder.decode( | |
latent, target_shape=input_videos.shape | |
).sample | |
print(f"reconstructed shape={reconstructed_videos.shape}") | |
# Calculate the loss (e.g., mean squared error) | |
loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos) | |
# Perform backward pass | |
loss.backward() | |
print(f"Demo completed with loss: {loss.item()}") | |
# Ensure to call the demo function to execute the forward and backward pass | |
if __name__ == "__main__": | |
demo_video_autoencoder_forward_backward() | |